

AD A LUCE 58

ARO 17219.1-R-EC LEV (

81 11 24078

FILE COPY

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTAT	READ INSTRUCTIONS BEFORE COMPLETING FORM		
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
Lie Groups and Lie Algebras in	Final 3/1/80 - 2/28/81		
		6. PERFORMING ORG, REPORT NUMBER	
7. AUTHOR(+)	8. CONTRACT OR GRANT NUMBER(s)		
Thomas G. Newman	DAAG 29-80-C-0087		
Performing organization name and acc Department of Mathematics Texas Tech University Lubbock, TX 79409	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
U. S. Army Research Office	12. REPORT DATE 10-26-81		
Post Office Box 12211 Research Triangle Park, NC	13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & AGGRESSIL &	illerent from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified	

16. DISTRIBUTION STATEMENT (at this Report)

Approved for Public Release: Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the electract entered in Block 20, if different from Report)

NA

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official department of the Army position, policy, or decision unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Video tracking, two dimensional image, Lie group, Lie algebra, differential form, affine transformations

. ABSTRACT (Carclese as reverse state if responsely and identify by block number)

When a three-dimensional dynamic scene is projected to a two-dimensional image plane, a complex class of motions are observed, which may be approximated by translation and linear transformation. In this report, we show how such motion may be resolved into principal components and measured from 2-dimensional data. Lie theoretic techniques are used to obtain a motion model, and to incorporate generalized velocity measurements in a closed loop feedback tracker. Stability of numerical calculations is enhanced by a method based on an application of Stoke's Theorem to certain differential 2-forms.

DO TORM 1473 EDITION OF I NOV 65 IS OBSOLETE

1
•

Lie Groups and Lie Algebras in Video Tracking

by

Thomas G. Newman October 26, 1981

U.S. Army Research Office
Contract DAAG29-80-C-0087
Department of Mathematics
Texas Tech University
Lubbock, Texas 79409

Approved for Public Release; Distribution Unlimited.

Table of Contents

Chapter I	1-8
Chapter II	9-13
Chapter III	14-18
Chapter IV	19-20
Bibliography	21
Appendix A	Al-All
Appendix B	B1-B17
Appendix C	C1-C6

I. Affine Transformations and Tracking.

When a dynamic three-dimensional scene is observed via an optical projection, a quite complex class of motions are induced in the image plane [5,6,7,9]. In general, this class of motions is highly non-linear, being dependent on the geometry of the objects being observed as well as their trajectories in space[3]. Nevertheless, in many cases the motion is approximated closely by translation, magnification and rotation in the image plane. It is easy to see that this approximation is best for motion in space which consists of translation and rotation about a line parallel to the bare sight.

A better approximation results by consideration of the full affine group in the plane, which includes shearing in two directions as well as the motions mentioned above. By definition, an affine transformation in the plane \mathbb{R}^2 is of the form

$$T(y) = Ay + a, y \in \mathbb{R}^2$$
 (1.1)

where A is a non-singular 2x2 matrix and $a\epsilon R^2$ is considered as a column vector [4,10]. The set of all such transformations T is called the <u>general affine group</u> and is denoted GA(2). It is easily seen that the subset consisting of translations, magnifications and rotations forms a subgroup, which we denote by SA(2). In order that T(y) = Ay + a belong to SA(2) it is necessary and sufficient that $A_{11} = A_{22}$ and $A_{12} = -A_{21}$. In this case, the magnification factor is $(A_{11}^2 + A_{21}^2)^{1/2}$ and the rotation angle is $atn(A_{21}/A_{11})$.

In order to consider dynamic images, it is necessary to allow

A and a in (1.1) to depend on time. This gives rise to a trajectory u(t,y) for each $y \in \mathbb{R}^2$ given by

$$u(t,y) = A(t)y + a(t)$$
 (1.2)

where $(A(t), a(t)) \in GA(2)$, and we require that A(0)=I, a(0)=0 in order that the trajectory pass through y at time t=0; i.e., u(0,y)=y.

As in $\{4\}$, though only for linear transformations, we may realize the pair (A(t), a(t)) as the solution of a linear system of differential equations. Let us define

$$\Lambda(t) = \dot{\Lambda}(t) \Lambda^{-1}(t) \qquad (1.3a)$$

$$\lambda(t) = a(t) - \Lambda(t) a(t), \qquad (1.3b)$$

from which,

$$A(t) = \Lambda(t) A(t), A(0) = I$$
 (1.4a)

$$a(t) = \lambda(t) + \Lambda(t) a(t), a(0) = 0$$
 (1.4b)

We may summarize the correspondences defined by (1.3) and (1.4) as follows:

Theorem 1.1: Equations (1.3) and (1.4) establish a one-to-one correspondence between differentiable curves (A(t), a(t)) in GA(2) satisfying A(0) = I, a(0) = 0 and continuous curves ($\Lambda(t)$, $\lambda(t)$) where $\Lambda(t)$ is an arbitrary 2x2 matrix and $\lambda(t)$ ϵR^2 . Moreover, in order that (A,a) belong to SA(2) it is necessary and sufficient that $\Lambda_{11} = \Lambda_{22}$ and $\Lambda_{12} = -\Lambda_{21}$.

The first part of the above theorem apparent from (1.3) and (1.4). A rigorous and detailed proof proceeds exactly as given in [4] for linear transformations. The last part can be deduced by a few calculations using the fact that elements of SA(2) satisfy $A_{11} = A_{22}$ and $A_{12} = -A_{21}$.

Now, if we differentiate (1.2) with respect to t, use (1.4) and (1.2) again, we obtain

$$\frac{\partial u}{\partial t}(t,y) = \Lambda(t) \ u(t,y) + \lambda(t). \tag{1.5}$$

Of course, $v(t,y) = -\frac{\partial u}{\partial t}(t,y)$ is the velocity field along the trajectory u(t,y). Equ. (1.5) shows that the velocity at a point u depends on u as well as t and is therefore not spatially invariant.

Note that (1.5) in fact gives the differential equation for an arbitrary affine trajectory, and when $\Lambda(t)$ is restricted as in Theorem 1.1, it gives the equation for a trajectory under the restricted group of motions SA(2). By virtue of (1.2), we see that (A(t), a(t)) obtained from (1.4) may be considered as a fundamental system of solutions to the evolution equation (1.5). Now it is important to note that the fundamental system of solutions is completely determined by the pair $(\Lambda(t), \lambda(t))$ which is spatially invariant, being a function of time only. To establish convenient terminology, let us give the following Definition 1.1: The pair $(\Lambda(t), \lambda(t))$ is the generalized velocity field of the family of affine trajectories u(t,y) defined by (1.5).

We may now state

Theorem 1.2: A family u(t,y) of affine trajectories satisfying u(0,y)=y is completely determined from its generalized velocity field, which is spatially invariant, via (1.4) and (1.2). Moreover, the absolute velocity v at a point u on a trajectory is given, as in (1.5), by $v=\Lambda(t)u+\lambda(t)$.

Let us write $\lambda(t) = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$, $\Lambda(t) = \begin{bmatrix} \lambda_3 & \lambda_5 \\ \lambda_4 & \lambda_6 \end{bmatrix}$ and expand the equa-

tion $u = \Lambda u + \lambda$ (where the t-dependence has been suppressed) in the form

$$\frac{3}{3t} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} \mathbf{u}_1 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} 0 \\ \mathbf{u}_1 \end{bmatrix} + \lambda_5 \begin{bmatrix} \mathbf{u}_2 \\ 0 \end{bmatrix} + \lambda_6 \begin{bmatrix} 0 \\ \mathbf{u}_2 \end{bmatrix}$$
(1.6)

In this way we can identify individual vector fields $v^1(u), \ldots, v^6(u)$ and write (1.6) in the form

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \sum_{i=1}^{6} \lambda_{i}(\mathbf{t}) \quad \mathbf{V}^{i}(\mathbf{u}) \tag{1.7}$$

In a similar manner for SA(2), we write

$$\lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \text{ and } \Lambda = \begin{bmatrix} \lambda_3 - \lambda_4 \\ \lambda_4 & \lambda_3 \end{bmatrix}$$

so that

$$\frac{\partial}{\partial t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \lambda_4 \begin{bmatrix} -u_2 \\ u_1 \end{bmatrix}, \tag{1.8}$$

allowing four vector fields $v^1(u), \ldots, v^4(u)$ to be indentified. Finally, we rewrite (1.8) as

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \sum_{i=1}^{4} \lambda_{i}(\mathbf{t}) \quad \mathbf{v}^{i}(\mathbf{u}) \tag{1.9}$$

It should be noted that the functions v^i defined by (1.7) or (1.9) are characteristic of the class of motions under consideration, and more general classes of motion can be treated by consideration of other generators v^1, v^2, \cdots . In the cases of

interest, the sets of vector fields derived above define the Lie algebras [2] of GA(2) and SA(2). Any vector field $v: R^2 + R^2$ induces a differential operator Y_V , called an infinitesimal transformation, which is defined by

$$Y_{v} = v_{1}(y) \frac{\partial}{\partial y}_{1} + v_{2}(y) \frac{\partial}{\partial y}_{2}$$
 (1.10)

where $v_1(y)$ and $v_2(y)$ are the components of v(y). In Tables 1 and 2 we list the infinitesimal transformations for the groups GA(2) and SA(2), given in terms of a variable $x=(x_1,x_2)$ for later application

Table 1. Infinitesimal transformations for GA(2).

$$x_{1} = \frac{3}{3x_{1}}$$

$$x_{3} = x_{1} \frac{3}{3x_{1}}$$

$$x_{5} = x_{2} \frac{3}{3x_{1}}$$

$$x_{4} = x_{1} \frac{3}{3x_{2}}$$

$$x_{6} = x_{2} \frac{3}{3x_{2}}$$

Table 2. Infinitesimal transformations for SA(2)

$$x_{1} = \frac{3}{3x_{1}}$$

$$x_{2} = \frac{3}{3x_{2}}$$

$$x_{3} = x_{1} \frac{3}{3x_{1}} + x_{2} \frac{3}{3x_{2}}$$

$$x_{4} = x_{1} \frac{3}{3x_{2}} - x_{2} \frac{3}{3x_{1}}$$

Note that u(t,y) given by (1.2) may be regarded as the location at time t of the particle which was at y at time t=0. An observar at some point x will observe this particle provided that x = u(t,y) = A(t)y + A(t). We may solve this equation for y to obtain $y = A^{-1}(t)(x - a(t))$. Thus we define the trace of the point $x \in \mathbb{R}^2$ to be

$$s(t,x) = A^{-1}(t)(x-a(t)), x \in \mathbb{R}^2.$$
 (1.11)

We may interpret s(t,x) to be the particle which will arrive at x at time t.

Let us now consider a two-dimensional image, represented by a function $f:\mathbb{R}^2 \to \mathbb{R}$, and suppose that the image f is subjected to an affine transformation (A(t), a(t)). Here a value f(y) is regarded as a feature which propagates along the trajectories of the motion. This is an extremely powerful, and somewhat restrictive, assumption which is not always valid in real images. For example, it is violated by changes in radiance values which vary as a function of the angle of incident illumination. On the other hand, it is valid in most instances over short time intervals and deviations from this assumption may frequently be treated as higher order effects.

In any event, if the feature f(y) is propagated along trajectories, then a stationary observor, say at point x, will observe a value F(t,x) = f(s(t,x)) at time t, since s(t,x) represents the particle arriving at x at time t. We may now state a most important result.

Theorem 1.3: Let a time-varying image F be given by

$$F(t,x) = f(s(t,x))$$
 (1.12)

where s(t,x) is an affine trace as in (1.11) with generalized velocities

$$\lambda(t) = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}, \lambda(t) = \begin{bmatrix} \lambda_3 & \lambda_5 \\ \lambda_4 & \lambda_6 \end{bmatrix}.$$
 Then

$$-\frac{3F}{3t} = \int_{i=1}^{6} i(t) X_{i} F, \qquad (1.13)$$

where X_1, \ldots, X_6 are given in Table 1.

A similar result holds if we restrict to SA(2), using X_1, \ldots, X_4 from Table 2.

Proof: This result may be deduced from results given in [7], provided we compensate for the change from "left invariance" in that development to the "right invariance" of the current treatment. However, a direct proof is instructional and will be outlined herein. We first show

Lemma 1.3.1: For s(t,x) given by (1.11)

$$-\frac{3s}{3t} = \sum_{i=1}^{6} \lambda_i(t) X_i s. \qquad (1.14)$$

Proof: First note that by direct calculation we have $\sum_i X_i s = \sum_i X_i A^{-1}(x-a) = A^{-1}(\sum_i X_i X_i) = A^{-1}(\sum_i X_i V^i(x)) = A^{-1}(\Lambda x + \lambda)$. Also, noting that $\frac{d}{dt} A^{-1} = -A^{-1}AA^{-1}$, we have $\frac{\partial s}{\partial t} = \frac{\partial}{\partial t} A^{-1}(x-a) = -A^{-1}AA^{-1}(x-a) - A^{-1}A(x-a) - A^{-1}(\lambda + \Lambda a) = -A^{-1}(\Lambda x + \lambda)$. Hence, the desired result follows.

Returning to the proof of Theorem 1.3, we have $\sum_{i} \lambda_{i} X_{i} F(tx) = \sum_{i} \lambda_{i}(t) v_{j}^{i}(x) \frac{\partial}{\partial x_{j}} f(s(t,x))$

$$= \sum_{i} i(t) v_{j}^{i}(x) \frac{\partial s_{k}}{\partial x_{j}} (t, x) \frac{\partial f}{\partial s_{R}} (s)$$

$$= \frac{5}{i} \lambda_{i}(t) X_{i} s_{R}(t,x) \frac{3f}{3s_{k}}(s)$$

$$= -\frac{3s_{k}}{3t}(t,x) \frac{3f}{3s_{k}}(s) = -\frac{3f(s(t,x))}{2t}$$

$$= -\frac{3F}{3T}(t,x) , \text{ as desired.}$$

Theorem 1.3 appears to be fundamental to the analysis of motion in dynamic images. As is evident from the proof, an analogue is valid in a much more general setting. In fact, scrutiny of the proof shows that it depends mainly on Lemma 1.3.1. Consequently, the theorem will hold for any class of motions for which a suitable form of the "trace" lemma can be obtained. The significance of Theorem 1.3 lies chiefly in the fact that the generalized velocities (which are usually unknown) appear as linear coefficients in (1.13), along with quantities which can be calculated from the data F(t,x).

The main problem with the extraction of the generalized velocities from (1.13) is the general lack of numerical precision in the calculation of the derivatives from real data (e.g., digitized video). In subsequent sections we shall show how to incorporate (1.13) in a feedback loop which is very stable and how to obtain an equivalent formulation based on integration rather than differentiation.

II. A Velocity Feedback Tracker

The theoretical results of this section result from research done under a separate contract and for which a publication is in preparation. In view of the fact that the techniques have been incorporated in the experimental portion of this report, these results will be presented in this report in the context of affine transformations.

Let absolute image coordinates be denoted by $y = (y_1, y_2)$ and introduce additional coordinates as follow: Let coordinates z be established relative to a moving target, and let coordinates x be established in a movable "window". We assume that the motions of both the target and the window may be described by affine transformations relative to absolute image coordinates. It is assumed that the motion of the window may be chosen at will, while the motion of the target is prescribed (e.g. by nature) and is unknown.

By the affine assumption, we may describe the transformation from window coordinates to image coordinates by

$$y_w(t,x) = A(t)x + a(t) , x \in R_w^2 ,$$
 (2.1)

where (A(t), a(t)) is a suitable family of affine transformations. Similarly, the transformation from target coordinates to image coordinates is

$$y_{T}(t,z) = B(t) z + b(t) , z \varepsilon_{T}^{2}$$
 (2.2)

for suitable (B(t), b(t)) ϵ GA(2). Let us denote the respective generalized velocity fields by $(\Lambda_A,\ \lambda_A)$ and $(\Lambda_B,\ \lambda_B)$.

By equating $Y_T(t,z) = Y_W(t,x)$ we may solve for the point z

^{*} ONR Contract N0014-76-C-1136

on the target which arrives at point x in the window at time t, to obtain:

$$z(t,x) = B^{-1}(A_X + a - b),$$
 (2.3)

where dependence on t has been suppressed on the right. We note that z(t,x) in (2.3) may be regarded as a trace in the sense of the previous section. By an application of Lemma 2.3.1 we have:

Theorem 2.1: There exists a generalized velocity field $(\Gamma(t), \gamma(t))$ such that

$$-\frac{\partial z(t,x)}{\partial t} = \int_{i=1}^{6} \gamma_i(t) X_i z(t,x), \qquad (2.4)$$

where $\gamma(t) = \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}$, $\Gamma = \begin{bmatrix} \gamma_3 & \gamma_5 \\ \gamma_4 & \gamma_6 \end{bmatrix}$ and the operators X_1, \dots, X_6 are

given in window coordinates as in Table 1.

Now, let f(z) be a feature of the target, measured at point z, and assume that this feature propogates along the target trojectories. An observor at point x in the window therefore observes data F(t,x) = f(z(t,x)), inasmuch as z(t,x) is the point which arrives at x at time t. From Theorem 1.3 we obtain Theorem 2.2: In the above context,

$$-\frac{\partial F}{\partial t}(t,x) = \int_{i=1}^{6} \gamma_{i}(t) X_{i}F(t,x)$$
 (2.5)

In principle, (2.5) allows the determination of the generalized velocities of the target relative to the window. Since we have free choice of window velocities, relative to the image coordinates, this is tantamount to measurement of absolute target velocities. The conversion process will now be described.

Let us denote by \overline{X} the window space, \overline{Y} the image space, and let $T(\overline{X})$ and $T(\overline{Y})$ be the respective tangent spaces. Since the map from \overline{X} to \overline{Y} is $y = A \times + a$, as in (2.1), it follows that the induced map on the tangent spaces is simply $y^* = A \times^* [1,2]$. Now the velocity field (Γ, γ) defines a map $\overline{X} + T(\overline{X})$ given by $x^* = \Gamma \times + \gamma$ (see (1.5)). Accordingly, a velocity field (∇, λ) is induced on \overline{Y} , which maps $\overline{Y} + T(\overline{Y})$ in a similar fashion. The velocity field (Λ, λ) is defined by the commutative diagram

$$(A,a) \int \frac{\overline{X}}{Y} \frac{(\Gamma,\gamma)}{(\Lambda,\lambda)} \frac{T(\overline{X})}{T(\overline{Y})}.$$

Thus, we calculate $y^* = \Lambda y + \lambda$, by inverting (A,a) and taking the upper path, to be given by $y^* = A(\Gamma A^{-1}(y-a)+\gamma) = A\Gamma A^{-1}y + A\gamma - A\Gamma A^{-1}a$. By comparison, we obtain

$$\Lambda = A \Gamma A^{-1} \tag{2.6a}$$

$$\lambda = A\gamma - A\Gamma A^{-1}a \tag{2.6b}$$

Now, since the velocity field (Γ,γ) represents the difference between target and window velocities in the window coordinate system. we see that (Λ,λ) must represent this same difference relative to the absolute image coordinate system. That is,

$$\Lambda = \Lambda_{B} - \Lambda_{A} \tag{2.7a}$$

$$\lambda = \lambda_{B} - \lambda_{A} \tag{2.7b}$$

We may summarize these results in a useable form as follows: Theorem 2.3: Let (2.1) and (2.2) define the motion of a window and a target, respectively, relative to a system of absolute image coordinates, and let $(\Lambda_{A}, \ \lambda_{A})$ and $(\Lambda_{B}, \ \lambda_{B})$ be the corresponding generalized velocities. Further, let (Γ, γ) be the generalized velocities of the target relative to the window, as determined by (2.5).

Then

$$\Lambda_{\rm B} - \Lambda_{\rm A} = {\rm ArA}^{-1} \tag{2.8a}$$

$$\lambda_{\rm B} - \lambda_{\rm A} = A \gamma - A \Gamma A^{-1} a.$$
 (2.8b)

The previous theorem immediately suggests an algorithm for determination of velocities in an image. More generally, the algorithm performs tracking since, as will be seen, the result is to force the window to follow the target by emulation of velocities. The algorithm is as follows:

<u>Step 1</u>. Initialize the window by choice of A(0), a(0). In the absence of a priori information, initialize $\Lambda_A(0)=0$, $\lambda_A(0)=0$. Sample window values $F(t_0,x)$ at time $t_0=0$.

Step 2. Sample window values $F(t_n,x)$ at time $t_n = t_{n-1} + \delta$. Approximate $\frac{\partial \vec{r}}{\partial t}$ and X_i F at various points in the window and form a system of linear equations using (2.5).

Step 3. Solve the resulting linear equations for $\gamma_1, \gamma_2, \dots$.

Step 4. Replace $\Lambda_A + \Lambda_A + A\Gamma A^{-1}$ and $\lambda_A + \lambda_A + A\gamma - A\Gamma A^{-1}a$. Note: If the calculation of $\gamma_1, \gamma_2, \ldots$ were exact, this would result in $\Lambda_A + \Lambda_B(t_n)$ and $\lambda_A + \lambda_B(t_n)$

Step 5. Take a δ time step in the numerical solution $A = \Lambda_A A$, $\dot{a} = \gamma_A + \Lambda_A a$ to obtain $(A(t_n), a(t_n))$. This effectively moves

the window.

Step 6. Repeat from step 2.

Emperical results indicate that the above algorithm conveys rapidly over a fairly broad range of target velocities. Although the initial estimate of target velocities is usually fairly coarse, it is generally in the right direction and results in good estimates after 3 to 5 iterations. Subsequently, the target is tracked very well with only a nominal amount of slew. More importantly, the computational speed is such that it is feasible for real-time implementation, with calculations naving been done at 25 to 100 iterations per second on various computers, including time spent in simulation support.

The most notable failure is a high degree of instability encountered in dealing with real data in the form of digitized images. The available image data, however, did not have a suitable dynamic range in comparison to the noise level. Considerable improvement resulted by expanding the contract and filtering to obtain a greater dynamic range.

The results of performing the above algorithm on simulated data is presented in appendix A.

III. Alternate Formulation via 2 - forms.

The major source of error in the calculation of generalized velocities would appear to be that introduced in the numerical approximation of spatial derivatives. Although the situation is improved somewhat by filtering and the use of multi-point formulas, it is still desirable to seek alternate approaches. As can be seen from examination of the algorithm of the preceeding section, any method for calculation of generalized velocities may easily be inserted in the basic tracker.

In this section we appeal to a form of Stoke's Theorem [1] to obtain an integration based analogue of Theorem 1.3. The formula obtained is strictly valid only when the generalized velocities are constant, although is is a useful approximation when the rates of change of the velocities are small.

We consider the three dimensional space R^3 consisting of time t and two spatial variables x and y. Coordinates $\xi=(t,x,y)$ are chosen to make a right-hand coordinate system, and we observe this orientation in defining differential forms. We state the form of Stoke's Theorem required:

Stoke's Theorem: Let Ω be a rectangle in (t,x,y) space R^3 and let w be a differentiable 2-form. Then

$$\int_{\Omega} \omega = \int_{\Omega} d\omega \qquad (3.1)$$

Here ω is of the form $\omega=\alpha_0{\rm d}x{\rm d}y+\alpha,{\rm d}y{\rm d}t+\alpha_2{\rm d}t{\rm d}x$, with α_0 , α_1 , α_2 , differentiable functions of $\xi\epsilon R^3$, and

$$d\omega = \frac{\partial \alpha_0}{\partial t} + \frac{\partial \alpha_1}{\partial x} + \frac{\partial \alpha_2}{\partial y} \quad dtdxdy.$$

Although the results to be presented may be generalized considerably, our derivation and experimental results will be given only for SA(2). Thus, the appropriate vector fields and corresponding infinitesimal transformations may be obtained from (1.8), (1.10) and Table 2, with x and y substituted in the obvious manner. By analogy with (1.9), for a constant velocity field $\lambda = (\lambda_1, \ \lambda_2, \ \lambda_3, \ \lambda_4), \text{ let us define a vector valued map}$ $\eta\colon R^4xR^2+R^2\text{ by}$ $\eta(\lambda,\xi) = \sum_{i=1}^4 \lambda_i v^i(\xi) = \begin{bmatrix} \lambda_1 + \lambda_3 x - \lambda_4 y \\ \lambda_2 + \lambda_4 x + \lambda_3 y \end{bmatrix}. \tag{3.2}$

As usual, let $\frac{\eta}{1}, \frac{\eta}{2}$ denote the components of $\tilde{\gamma}$.

Now, if $s(t,\xi)$ is the trace corresponding to the generalized velocity field λ and $F(t,\xi)=f(s(t,\xi))$ is observed data, we may express Equ. (1.13) of Theorem 1.3 as

$$-\frac{\partial \mathbf{F}}{\partial \mathbf{t}} = \eta_{1} \frac{\partial \mathbf{F}}{\partial \mathbf{x}} + \eta_{2} \frac{\partial \mathbf{F}}{\partial \mathbf{y}}. \tag{3.3}$$

We intend to apply Stoke's Theorem to the 2-form defined by $\omega = F \ dxdy + {^{7}\!\!}_1 F \ dydt + {^{7}\!\!}_2 F \ dtdx \tag{3.4}$

The principal result is stated as
Theorem 3.1: In the context above,

$$d\omega = \left(\frac{\partial \eta_1}{\partial x} + \frac{\partial \eta_2}{\partial y}\right) F dtdxdy$$

$$= 2\lambda_3 F dtdxdy \qquad (3.5)$$

To establish this, we calculate d_{ω} , using the fact that dxdydt=dydtdx=dtdydx (whereas, for example, observing orientation, dtdydt=-dtdxdy). We have

$$d\omega = \left(\frac{\partial F}{\partial t} + \frac{\pi}{1} \frac{\partial F}{\partial x} + F \frac{\partial \pi_{1}}{\partial x} + \frac{\pi}{2} \frac{\partial F}{\partial y} + F \frac{\partial \pi_{2}}{\partial y}\right) dtdxdy. By$$

application of (3.3) and then (3.2) this simplifies to dw = $\left(\mathbf{F} \frac{\partial \eta_1}{\partial \mathbf{x}} + \mathbf{F} \frac{\partial \eta_2}{\partial \mathbf{y}} \right) \, \mathrm{dt} \mathrm{dx} \mathrm{dy} = 2 \lambda_3 \, \, \mathrm{F} \, \, \mathrm{dt} \mathrm{dx} \mathrm{dy} \, , \, \, \mathrm{as} \, \, \mathrm{desired} \, .$

By an application of Stoke's Theorem, and a somewhat tedious calculation, we immediately obtain:

Theorem (3.2). Let Ω be a rectangle in \mathbb{R}^3 defined by opposing corners (t₁, x₁, y₂). In the context described above, in particular with λ constant, we have

$$\sum_{i=1}^{4} \lambda_i k_i = k_0$$
(3.6)

where k_0 , k_1 ,..., k_4 are given in Table 3.

Table 3. Coefficients resulting from Stoke's Theorem.

$$k_{0} = -\int_{\partial\Omega} F \, dxdy$$

$$k_{1} = \int_{\partial\Omega} F \, dydt$$

$$k_{2} = \int_{\partial\Omega} F \, dtdx$$

$$k_{3} = \int_{\partial\Omega} xF \, dydt + \int_{\partial\Omega} yF \, dtdx - 2\int_{\Omega} F \, dtdxdy$$

$$k_{4} = \int_{\partial\Omega} xF \, dtdx - \int_{\partial\Omega} yF \, dydt$$

It is important that orientation be considered in the evaluation of the coefficients in Table 3 (see [1]). The sign convention is such that for a principal 2-form (e.g., dxdy) a positive (negative) sign prevails on a face of the rectangle Ω provided

that application of a right-hand rule points outward from (inward to) the rectangle Ω . Writing $\int_{\mathbf{x}}^{\mathbf{x}}$ for $\int_{\mathbf{x}_1}^{\mathbf{x}_2}$ (similarly for t and y) and assuming that $\mathbf{t}_1 < \mathbf{t}_2$, $\mathbf{x}_1 < \mathbf{x}_2$, $\mathbf{y}_1 < \mathbf{y}_2$, by way of example we have,

$$\int_{\Omega} F \, dxdy = \int_{Y} \int_{X} F(t_2, x, y) \, dxdy - \int_{Y} \int_{X} F(t_1, x, y) \, dxdy,$$

and

$$\int_{\partial\Omega} xF \, dydt = x_2 \int_{t} \int_{v} F(t,x_2,y) \, dydt -x_1 \int_{t} \int_{y} F(t,x_1,y) \, dydt$$

and

$$\int_{\Omega} xFdtdx = \int_{\Omega} xF(t,x,y_2)dtdx - \int_{\Omega} xF(t,x,y_1)dtdx.$$

The remaining integrals may be expanded in a similar fashion.

Observe that differences are not entirely eliminated from the final formulas. However, the formulas are so written to indicate that the differences are taken after integration, even though in certain cases the formula could be collapsed with a difference taken before evaluation of the iterated integral.

The advantage of (3.6) over (1.13) as a means of calculation of the generalized velocities is achieved mainly by the filtering effect of the surface and volume integrals. As a matter of practice, several rectangles Ω_1,\ldots,Ω_m are selected. Each rectangle Ω_2 gives rise to an equation of the form (3.6),

$$\sum_{i=1}^{4} k_{i}^{(e)} \lambda_{i} = k_{0}^{(e)} . \qquad (3.7)$$

The resulting system of m equations in 4 unknowns may then be solved by a least-squares method. Note that this approach may be applied to the feedback tracking algorithm presented in Section 2

to calculate the velocities γ_1,\ldots,γ_4 of the target relative to the window, replacing the corresponding calculations based on (2.5). This has been implemented in a computer program and tested on real image data. The results are very encouraging and are presented in part in Appendix B. This method involves more computational overhead, with the best rate achieved to this point being about 10 iterations (=frames) per second. With some streamlining we believe that real-time rates of 30 frames per second can be achieved.

IV. Summary and Conclusions.

This report presents a method based on the theory of Lie groups for velocity tracking in a dynamic image in which the motion of picture parts can be ascribed to affine transformations. A feedback tracking algorithm was developed and tested on simulated data.

Since the random disturbances in real images preclude the use of simple methods for obtaining equations involving the velocities of trajectory, a method based on integration of differential forms was developed. This method was incorporated in the feedback tracker and tested on real image data. The results are very encouraging, with computation speeds approaching ten frames per second on a VAX 11/780. We believe that this method is viable as a component of a real-time video tracking system.

Among the problems left outstanding, a satisfactory algorithm for target acquisition has not yet been developed. In the experimental work performed, the initial target location was supplied as an input parameter. To be useful, a method for automating this step is essential.

In addition, we continue to experience problems with numerical percision. This seems to be related to the absence of sufficient dynamic range in real image data, indicating that this could be improved by changes in the capability of sensors. We feel that a great improvement would result from greater contrast in the image data.

Finally, the class of motions considered herein (affine or restricted affine) is not general enough for many applications,

and the methods need to be extended to include projective distortion as well.

The equations which relate generalized velocities to time-varying images have other applications. They have been applied to a problem in pattern matching with considerable success, as fully described in [1]. The theoretical results and a summary of the experimental results of [11] have been submitted for publication as reference [8], which is attached as Appendix C.

References

- [1] Buck, C.R. and E.F. Buck, Advanced Calculus, McGraw Hill Brook Co., New York, 1965.
- [2] Cohn, P.M., <u>Lie Groups</u>, Cambridge University Press, London, 1957.
- [3] Fishback, W.T., Projective and Euclidean Geometry, John Wiley and Sons, Inc., 1969.
- [4] Greub, W.H., <u>Linear Algebra</u>, Springer-Verlag, Inc., New York, 1967.
- [5] Huang, T.S., "Noise filtering in moving images", Workshop on imaging trackers and autonomons acquisition applications for missile guidance, Redstone Arsenal, Huntsville, AL, 1979.
- [6] Martin, W., and J.K., Aggarwal, "Survey, dynamic scene analysis", Computer Graphics and Image Processing", Vol. 7, 1978.
- [7] Newman, T.G., and D.A. Demus, "Lie theoretic methods in video tracking", Workshop on imaging trackers and autonomous acquisition applications for missile guidance", Redstone Arsenal, Huntsville, AL, 1979
- [8] Newman, T.G. and L. Zlobec, "Adaptive pattern matching using control theory on Lie groups", Proceedings of the International Symposium on the Mathematical Theory of Networks and Systems, Santa Monica, CA, Aug. 1981.
- [9] Roach, J.W., and J.K. Aggarwal, "Computer tracking of objects moving in space", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 1, 1979.
- [10] Smirnov, V.I. (rev.,ed. R.A. Silverman), Linear Algebra and Group Theory, McGraw-Hill Book Co., Inc., New York, 1961.
- [11] Zlobec, Leopold, Pattern Matching by Means of Adaptive Control, Master's Report, Texas Tech University, 1980.

APPENDIX A

Feedback Tracker Simulation

A typical imaging system might include a sensor with a diameter (or cross section) of 25 mm and an optical focal length of 200 mm. At a 500 x 500 pixel density we obtain a conversion factor of .05 mm/pix or 20 pix/mm. With a target range of 1 km, say, then we obtain a conversion rate from sensor to target of 5 m/mm å 1 km.

In the results to be presented, translation velocities may be regarded as being given in mm/sec. Conversion to pix/sec or m/sec at the target may be done by multiplication by the appropriate factor. Thus, a translation velocity of 7 mm/sec at the sensor corresponds to 20 pix/sec or to 5 m/sec at a target having a range of 1 km. A magnification velocity of 1/sec translates by the same factor and would therefore represent a velocity of 5m/sec 1 km toward the sensor. On the other hand, rotational velocity may be considered as given in radius/sec.

In Table A-1 we present the output of the tracking simulator (the output routines were modified slightly for ease of presentation). Note that the target velocities (10, -10, 10, 10) correspond to a 3-D object with a translational velocity of 86.6 m/sec 1 km (about 194 miles/hour) which is rotating about 3 revolutions per second about bore sight. The time base was chosen as 100 frames/sec. Inspection of the last four columns of Table A-1 shows that the target velocities have been acquired satisfactorily after only 3 frames, at t=.03, and subsequently refined to exact values.

						
		Hor	Trans	Vent Thams	Madnification	Rotation
		0,10	99E+92	-0.1000E+02	0,1000E+02	0.1000E+02
7239	Herizontai Position	Vertical Position	Hor Tran		zed Veloc∶ties s Magnification	Rotation
9.00	0.0000E+00	0.0000E+00	0.0000E+	00 0.0000E+00	0.00005+00	0.0000E+00
0.01	0.8356E-01	-0.1050E+00	0.8356E+	01 -0.1950E÷00	0.7970E+01	0.5660E+01
0.02	0.1 967E+0 0	-0.2039E+00	0:9462E+	01 -0.9949E+0	0.10018702	0.9478E+01
5.03	0.3367E+0 9	-0.3083E+00	0.9969E+	01 -0.1002E+00	0 1003E+02	0.9967E-01
0.04	0.5012E+00	-0.4055E+00	0.9999EF	01 -0.10015+00	0.1001E+02	0 .9939 E+01
0.05	0.4919E400	-0.4960E+00	0.1000E+	02 -0.1006E+02	0.1000E+02	0.1000E+02
0.0±	0.9107E+00	-0.5764E+00	0.1000E+	02 -0.1000E+00	0.1000E+02	0.1000E+00
0.07	0.1157E+01	-0.6427E+00	0.1000E+	02 -0.1000E-00	0.1009E+02	0.10005402
9.08	0.1440E+01	-0.6913E+00	0.1000E÷	0 2 -0.100 0E +0:	2 0.1000E+02	0.10005-01
9,94	0.175 3E +01	-0.7165E+00	0.1000E+	02 -0.1000E+00	2 0.10006902	0.1000 E +02
0.10	0.2100E+01	-0.7128E+00	0.1000E+	02 -0.1000E+00	20430001.0	0.10008#67

The tracking simulation program, whose listing follows, is capable of a real-time rate of 33 frames/sec on a VAX 11/780, including the time spent simulating target motion.

```
100
      200
300
      С
         Program Title: TRACK4.FOR
 400
      C
500
      C
         Function: Demonstrate feedback tracker using synthetic
              data. Provide simulated motion consisting of
 600
      C
700
      C
              translation, magnification and rotation.
800
      С
 900
      ε
         Program Author: Thomas G. Newman
1000
      С
                         Department of Mathematics
1100
      C
                         Texas Tech University
1200
      C
                         Lubbock, Texas 79409
1300
      C
1400
      C
         Notice: Fermission is herewith dranted for use of these
1500
              programs, in whole or in part, for other than
      r
1600
      C
              personal or corporate dain.
1700
      ٤
      1800
1700
      С
               COMMON /WINDOW/ IWSIZE, WIND(5,5), SWIND(5,5), COORD(2,5,5)
2000
                               NEQU, NUNK, A(9,9), XLAHBA(9), B(9)
2100
               COMMON /EQU/
               COMMON /PARMS/
                               TIME, XYSTEP, TSTEP, FEED(6)
2200
2300
               COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
2400
                              XTRANU, YTRANU, ECOSU, ESINU,
2500
                              XVELI, YVELI, VMAGI, VROTI,
2600
                              XVELW, YVELW, VMAGW, VROTW
2700
       100
               TYPE *, 'ENTER VELOCITIES AND PRESS RETURN'
2800
               READ (5,*,END=200) XVELI,YVELI,VMAGI,VROTI
2900
               CALL INIT
3000
               DO 175 I=1,15
3100
                  CALL SAMPLE
3200
                  CALL DERIV
3300
                  CALL LINER
3400
                  CALL UPDATE
3500
                  CALL MOVER
3600
                  CALL COMPAR
3700
        175
               CCNTINUE
               GO TO 100
3800
        200
3900
               STOP
4000
               END
4100
      C
1200
                                      >>>>>>> SUBROUTINE INIT <<<<<<<
      C
4300
4400
      C
         This subroutine performs various initialization functions.
4500
      C
4600
      C
4700
               SUBROUTINE INIT
4800
               COHMON /WINDOW/ IWSIZE, WIND(5,5), SWIND(5,5), COORD(2,5,5)
                               NEQU, NUNK, A(9,9), XLAMDA(9), B(9)
4900
               COMMON /EQU/
5000
               COMMON /PARMS/ TIME, XYSTEP, TSTEP, FEED(6)
5100
               COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
5200
                              XTRANW, YTRANW, ECOSW, ESINW,
5300
                              XUELI, YVELI, UMAGI, UROTI,
5400
            3
                              XVELW, YVELW, VMAGW, VROTW
```

```
5500
       С
5600
        С
                Data is to be sampled at each point of a
 5700
                window of size IWSIZE by IWSIZE. A linear equation
        C
                is to be formed at each "interior" point, using the
5800
        С
5900
        С
                boundary points only in the differentiation process.
6000
        С
6100
                The number of equations, NEQU, is therfore the number
6200
        C
                of interior points, and involve NUNK unknowns, = 4
6300
        C
                in this program, but changeable to 6 for GA(2).
6400
5500
                XYSTEP and TSTEP are logical steps in space and time.
        С
6600
 5700
                 IWSIZE = 5
 4800
                 NEQU = (IWSIZE - 2)**2
 5900
                 NUNK = 4
7000
                 XYSTEP = 0.05
7100
                 TSTEP = 0.01
 7200
        С
 7300
        C
 7400
                GENERATE THE COORDINATES OF THE SAMPLE GRID RELATIVE TO
        С
7500
        C
                THE WINDOW.
 7600
7700
                MID = IWSIZE/2 + 1
 7800
                DO 10 I=1, IWSIZE
 7900
                     DO 15 J=1, IWSIZE
 8000
        C
                     WINDOW ORIGIN AT CENTER OF SAMPLE GRID
 8100
        C
 8200
        C
8300
                            COORD(1,I,J)=XYSTEP*FLOAT(I - MID)
 8400
                            COORD(2,I,J)=XYSTEP*FLOAT(J - MID)
 8500
        C
                      WINDOW ORIGIN AT CORNER OF SAMPLE GRID
 8600
        C
 8700
        C
8800
        C
                            COORD(1,I,J)=XYSTEP*FLOAT(I)
 8900
        C
                            COORD(2,I,J)=XYSTEP*FLOAT(J)
9000
 9100
                     CONTINUE
         15
 9200
        10
                CONTINUE
 9300
        C
 9400
                SET FEEDBACKS TO UNITY. LOWER VALUES PRODUCE
 9500
        С
                SLOWER ACQUISITION BUT GREATER STABILITY. LARGER VALUES
                MAY SPEED AQUISITION BUT CAUSE INSTABILITY.
 9500
        C
 9700
 9800
                FEED(1) = 1.0
9900
                FEED(2) = 1.0
10000
                FEED(3) = 1.0
10100
                FEED(4) = 1.0
10200
                FEED(5) = 1.0
10300
                FEED(6) = 1.0
10400
        0
10500
                INITALIZE THE TRAJECTORY OF THE IMAGE AT BORE SIGHT
        C
10500
10790
                XTRANI = 0.0
                YTRANI = 0.0
10800
```

```
10900
                ECOSI = 1.0
11000
                ESINI = 0.0
11100
        C
11200
        C
                INITALIZE THE POSITION OF THE WINDOW AT BORE SIGHT
11300
        C
11400
                XTRANW = 0.0
11500
                YTRANW = 0.0
11600
                ECOSW = 1.0
11700
                ESINW = 0.0
11800
        С
11900
                INITALIZE THE WINDOW VELOCITY TO XERO
        C
12000
        С
12100
                XVELW = 0.0
12200
                YVELW = 0.0
12300
                VMAGW = 0.0
12400
                VROTW = 0.0
12500
        C
12600
        С
                GET AN INITIAL SAMPLE FROM WINDOW
12700
12800
                TIME = 0.0
12900
                CALL SAMPLE
13000
        C
13100
        C
                TAKE THE INITIAL STEP IN TIME
13200
        С
13300
                CALL MOVER
13400
        C
13500
        C
                PRINT PAGE HEADINGS
13600
13700
                WRITE (6,1000)
                WRITE (6,1010)
13300
13700
         1000
                FORMAT('1', 'TIME', 5X, 'XTRANI', 8X, 'YTRANI', 8X, 'ECOSI', 9X,
14000
                      'ESINI',9X,'XVELI',9X,'YVELI',9X,'VMAGI',9X,'VROTI')
         1010 FORMAT(15X, 'XTRANW', 8X, 'YTRANW', 8X, 'ECOSW', 9X,
14100
14200
                      'ESINW',9X,'XVELW',9X,'YVELW',9X,'VMAGW',9X,'VROTW')
14300
        С
14400
                PRINT THE INITIAL COMPARISON BETWEEN TRAAJECTORIES
        C
14500
        С
14600
                CALL COMPAR
14700
                RETURN
14800
                END
14900
        С
15000
        C
                                         >>>>>> SUBROUTINE SAMPLE <<<<<<<
15100
        C
15200
                This subroutine generates values in a rectangular
15300
        C
                grid in the tracking window, saving the old values.
15400
15500
                SUBROUTINE SAMPLE
                 COMMON /WINDOW/ IWSIZE, WIND(5,5), SWIND(5,5), COORD(2,5,5)
15600
15700
                 DO 20 I=1, IWSIZE
15800
                    DO 25 J=1, IWSIZE
15900
                        X = COORD(1,I,J)
                         Y = COORD(2,I,J)
15000
16100
                         15200
                         WIND(I,J) = FWIND(X,Y)
```

```
13300
         25
                    CONTINUE
16400
         20
                 CONTINUE
                 RETURN
16500
                 END
16600
15700
        C
                                         >>>>>> SUBROUTINE DERIV <<<<<<<
15800
        C
16900
        Ç
17000
        C
                This routine calculates the various derivatives needed
17100
        C
                for formation of the linear system for the generalized
17200
        C
                velocities.
17300
        С
                 SURROUTINE DERIV
17400
                 COMMON /WINDOW/ IWSIZE, WIND(5,5), SWIND(5,5), COORD(2,5,5)
17500
                                  NEQU, NUNK, A(9,9), XLAMDA(9), B(9)
                 COMMON /EQU/
17600
                 COMMON /PARMS/ TIME, XYSTEP, TSTEP, FEED (6)
17700
17800
                  SCALER = 2.0 * XYSTEP/TSTEP
17900
                  K = IWSIZE - 2
                  DO 20 I=1.K
18000
                      II = I + 1
18100
                      DO 10 J=1,K
18200
18300
                          JJ = J + 1
                           L = (I-1)*K + J
13400
                           X = CSORD(1,II,JJ)
13500
                           Y = COORD(2,II,JJ)
18600
                           CLC:1-II) DAIM - (LC:1+II) DAIM=XQ
18700
                           (1-LL, II) DAIW - (1+LL, II) DAIW=YD
18800
                       A(L,1) = DX
18900
                       A(L,2) = DY
19000
                       A(L,3) = X*DX + Y*DY
17100
                       A(L,4) = X*DY - Y*DX
19200
                         B(L) = SCALER * (WIND(II, JJ) - SWIND(II, JJ))
19300
                      CONTINUE
19400
         10
19500
         20
                  CONTINUE
19400
                  RETURN
19700
                  END
17300
        C
19900
                                          >>>>>>> SUBROUTINE LINEQ <<<<<<<
        C
20000
        C
                 Modified from the argument form:
20100
        C
                   LINEQ(M,N,A,X,B,CC)
20200
        C
        C
20300
                  SUBROUTINE LINEQ
20400
                  COMMON /EQU/
                                NEQU+NUNK,A(9,9),X(9),B(9)
20500
               INTEGER CC
20600
20700
        C
             SOLVE AX=B. T HOLDS AN UPPER TRIANGULAR MATRIX WHILE S
20800
        C
             IS WORKSPACE. THE METHOD FACTORS A=U*T WHERE THE COLUMNS OF
20900
21000
             U ARE ORTHOGANAL AND T IS TRIANGULAR. THE RESULTING SYSTEM
21100
             T*X=B' IS EASILY SOLVED BY BACK SUBSTITUTION. ASSUME M
21200
             EQUATIONS AND N UNKNOWNS.
                                        ( N (= M <= 9 )
        C
             THE MATRIX OF COEFFICIENTS. A IS STORED IN THE FIRST N ROWS
21300
        C
             AND THE FIRST M COLUMNS OF THE 9X9 A ARRAY. THE ROUTINE
21400
        C
21500
             BRINGS IN THE WHOLE 7X9, BUT ONLY USES A(1,1) TO A(N,M)
             (RECALL THAT FORTRAN STORES THE ARRAY COLUMN-WISE, BUT
21600
```

```
21700
        С
            ADRESSES THE ELEMENTS IN THE STANDARD ROW, COLUMN FORMAT)
            NOTE: THE A ARRAY IS ALTERED DURING EXECUTION.
21800
        С
21900
        C
22000
              DIMENSION T(9,9)
22100
              CC=1
22200
              M = NEQU
22300
              N = NUNK
            M MUST BE <= 9, AND N<=M. CC IS A COMPLETION CODE; IF THE
22400
        C
            SUBROUTINE EXECUTES PROPERLY CC WILL BE RESET TO 0 BEFORE RETURN
22500
        C
22600
               DO 5 I=1, NUNK
22700
                    X(I) = 0.0
        5
              CONTINUE
22800
               DO 40 I=1.N
22900
                 IF (I.EQ.1) GO TO 25
23000
23100
                 DO 20 J=1,M
23200
                   S=0
23300
                   I1=I-1
23400
                   DO 10 K=1,I1
                           IF (T(K,K) .LT. .0001) GQ TQ 5000
23500
        C
23600
                     S=S+A(J,K)*T(K,I)/T(K,K)
23700
           10
                     CONTINUE
23800
                   A(J,I)=A(J,I)-S
            20
                   CONTINUE
23900
24000
            25
                 DO 40 K=I,N
                   9=0
24100
                   DO 30 J=1,M
24200
                     S=S+A(J,I)*A(J,K)
24300
                     CONTINUE
24400
            30
24500
                   T([,K)=S
            40
                   CONTINUE
24600
24700
                 DO 60 I=1.N
                   S=0
24800
                   10 50 J=1,H
24900
25000
                     S=S+A(J,I)*B(J)
                     CONTINUE
25100
            50
25200
                   X(I)=S
                   CONTINUE
25300
            60
25400
                 DO 80 I=1,N
25500
                   I1=N+1-I
                   IF (I1.EQ.N) GO TO 75
25600
25700
                      I2=I1+1
25800
                      DO 70 J=12,N
                        X(I1)=X(I1)-T(I1,J)*X(J)
25900
26000
            70
                        CONTINUE
                           IF (T(I1,I1).LT..0001) GO TO 5000
         C
26100
26200
            75
                     X(I1)=X(I1)/T(I1,I1)
25300
            80
                      CONTINUE
               CC=0
26400
               RETURN
26500
26600
          5000 CC=-1
             A COMPLETION CODE OF -1 INDICATES THAT THE SUBROUTINE
26700
26800
             TRIED TO DIVIDE BY O.
               RETURN
26900
27000
               END
```

```
27100
        C
27200
        C
                                          >>>>>>> SUBROUTINE UPDATE <<<<<<<
27300
        ε
27400
        C
                This routine updates the velocities of the window
27500
        C
                 following the calculation of the target velocities
27600
        C
                 relative to the window. Sensitivity may be varied
27700
        ε
                by the feedback factors in the array FEED.
27800
        C
27900
                 SUBROUTINE UPDATE
                 COMMON /WINDOW/ IWSIZE, WIND(5,5), SWIND(5,5), COORD(2,5,5)
28000
                 COMMON /EQU/
                                  NEQU, NUNK, A(9,9), XLAMDA(9), B(9)
28100
28200
                 COMMON /PARMS/
                                 TIME, XYSTEP, TSTEP, FEED (6)
29300
                 COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
28400
             1
                                 XTRANW, YTRANW, ECOSW, ESINW,
28500
                                 XVELI, YVELI, VMAGI, VROTI,
23600
                                 XVELW, YVELW, UMAGW, UROTW
28700
                  DVELX = (ECOSW * XLAMDA(1) - ESINW * XLAMDA(2)) -
29800
             1
                           (XLAMDA(3) * XTRANW - XLAMDA(4) * YTRANW)
28900
                  DVELY = (ESINW * XLAMDA(1) + ECOSW * XLAMDA(2))
29000
             2
                            (XLAMDA(4) * XTRANW + XLAMDA(3) * YTRANW)
29100
                  DMAGV = XLAMDA(3)
                  DVROT = XLAMDA(4)
29200
29300
        C
29400
                  XVELW = XVELW - FEED(1) * DVELX
29500
                  YVELW = YVELW - FEED(2) * DVELY
29600
                 VMAGW = VMAGW - FEED(3) * DMAGV
29700
                  VROTW = VROTW - FEED(4) * DVROT
29800
29900
                 RETURN
30000
                 END
        C
30100
30200
                                          >>>>>> SUBROUTINE HOVER <<<<<<<
        C
30300
        C
30400
        С
                 This routine moves the window by taking a step in
30500
        C
                 the differential equations for the affine tranformation
30600
        C
                 which controls the window location. The method used is
30700
        C
                 a simple Euler method.
30800
        C
30900
        ſ.
                 The routine also simulates the motion of the target by
31000
        C
                 solving the corresponding differential equation for the
31100
        C
                 target. This portion would be removed if real data were
        C
31200
                 being used.
31300
31400
                  SUBROUTINE MOVER
31500
                  COMMON /PARMS/
                                  TIME, XYSTEP, TSTEP, FEED (6)
31600
                  COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
31700
             1
                                 XTRANW, YTRANW, ECOSW, ESINW,
31300
                                 XVELI, YVELI, UMAGI, UROTI,
             3
31900
                                 XVELW, YVELW, VMAGW, VROTW
32000
                  DECOS = VMAGW * ECOSW
                                         - VROTW * ESINW
32100
                  DESIN = VROTW * ECOSW + VMAGW * ESINW
32200
                  ECOSW = ECOSW + TSTEF * DECOS
32300
                  ESINW = ESINW + TSTEP * DESIN
        C
32400
```

```
32500
                 DXTRAN = XVELW + VMAGW*XTRANW - VROTW*YTRANW
32600
                 DYTRAN = YVELW + VROTW*XTRANW + VMAGW*YTRANW
32700
                 XTRANW = XTRANW + DXTRAN*TSTEP
                 YTRANW = YTRANW + DYTRAN*TSTEP
32800
32900
33000
                The following portions simulate motion of the target.
33100
33200
                 DECOS = VMAGI * ECOSI - VROTI * ESINI
33300
                 DESIN = VROTI * ECOSI + VMAGI * ESINI
33400
                 ECOSI = ECOSI + TSTEP * DECOS
33500
                 ESINI = ESINI + TSTEP * DESIN
33600
33700
                  DXTRAN = XVELI + VMAGI*XTRANI ~ VROTI*YTRANI
33800
                 DYTRAN = YVELI + VROTI*XTRANI + VMAGI*YTRANI
33900
                 XTRANI = XTRANI + DXTRAN*TSTEP
                  YTRANI = YTRANI + DYTRAN*TSTEP
34000
34100
34200
                Increment time.
34300
        С
                TIME = TIME + TSTEP
34400
34500
        С
34600
                RETURN
34700
                END
34800
        С
34900
        C
                                          >>>>>>> SUBROUTINE COMPAR <<<<<<<
35000
35100
        C
                This routine produces printed output for evaluation
35200
        ε
                purposes, and is therefore ancillary to the operation
35300
        C
                of the tracker.
35400
35500
                SUBROUTINE COMPAR
35600
                  COMMON /PARMS/ TIME, XYSTEP, TSTEP, FEED (6)
                  COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
35700
                                 XTRANW, YTRANW, ECOSW, ESINW,
35800
             1
             2
                                 XVELI, YVELI, VMAGI, VROTI,
35900
36000
                                 XVELW, YVELW, VMAGW, VROTW
             3
                  WRITE(6,2000)TIME, XTRANI, YTRANI, ECOSI, ESINI, XVELI, YVELI, UMAGI,
36100
36200
                        VROTI
36300
         2000
                  FORMAT(2X,F3,2,8(3X,E11,4))
35400
                  WRITE(6,2010)XTRANW, YTRANW, ECOSW, ESINW, XVELW, YVELW, VMAGW,
36500
                        VROTU
             1
         2010
                  FORMAT(10X,8(3X,E11.4))
35600
                  RETURN
36700
36800
                  END
36900
        C
                                          >>>>>>> FUNCTION FWIND <<<<<<<
37000
        С
37100
        C
37200
        C
                 This function returns a value at the point (x,y)
37300
                 in the window. It first mass to the corresponding
        C
37400
        C
                point in absolute image coordinates and calls for
37500
        C
                 image value at that point (see FIMAGE below).
37600
37700
                  FUNCTION FWIND(X,Y)
37300
                  COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
```

```
37900
             1
                                 XTRANW, YTRANW, ECOSW, ESINW,
38000
                                 XVELI, YVELI, VMAGI, VROTI,
             3
38100
                                 XVELW, YVELW, VHAGW, VROTW
38200
        С
38300
        C
38400
        C
38500
                  XIMAGE = XTRANW + ECOSW*X - ESINW*Y
                  YIMAGE = YTRANW + ESINWXX + ECOSWXY
38600
38700
                  FWIND = FINAGE(XIMAGE, YIMAGE)
38800
                  RETURN
38900
                  END
39000
        C
39100
        С
                                          >>>>>> FUNCTION FIMAGE <<<<<<<
39200
        C
39300
        C
                 This function returns the value at point (x,y) in the
39400
        E
                 absolute image coordinate system. It maps to target
39500
        C
                 coordinates and calls for the value at the corresponding
39600
        С
                 point on the tarset (see FORJ below).
39700
        C
37800
                  FUNCTION FIMAGE(X,Y)
39900
                  COMMON /COCHGS/ XTRANI, YTRANI, ECOSI, ESINI,
40000
              1
                                  XTRANW, YTRANW, ECOSW, ESINW,
40100
                                  XUELI, YUELI, UMAGI, UROTI,
40200
              3
                                  XVELW, YVELW, VMAGW, VROTW
40300
        С
40400
        С
40500
                  DET = ECOSI**2 + ESINI**2
40600
                   DX = X - XTRANI
                   DY = Y - YTRANI
40700
40800
        С
40900
        С
41000
                  XDBJ= ( ECOSI*DX + ESINI*DY)/DET
41100
                  YOBJ= ( -ESINI*DX + ECOSI*DY)/DET
41200
                  FIMAGE = FOBJ(XOBJ,YOBJ)
41300
                  RETURN
41400
                  END
41500
        С
        €
                                          >>>>>>> FUNCTION FOBJ <<<<<<<
41500
41700
        C
41800
        С
                 This function returns the gray value at a point (x,y)
41900
        C
                 in target coordinates. For actual tracking, this
42000
        ε
                 routine would be replaced by one which retrieves from
42100
        С
                 the image database. In the simulation, however, the
42200
        C
                 routine merely returns a synthetic value senerated
42300
                 from an expression.
42400
42500
                  FUNCTION FOBJ(X+Y)
42500
                  FQBJ = 1.0 + 10.0*X - 5.0*Y + 20.0*X*Y
42700
                  RETURN
42800
                  END
```

APPENDIX B

Tracking With Differential Forms

A tracking program was developed which utilized the theory presented in Section III. In order to test this program, digitized video images were obtained from the Advanced Technology Office, Instrumentation Directorate, White Sands Missile Range. One such image is shown in Figure B-1. A sequence of test images was prepared from this data by shifting to inject additional motion. Sections of the first six frames are shown in the left hand column of Figure B-2.

Parameters in the tracking program were set to use a 3x3 window in 3 consecutive frames to form a 3x3x3 rectangle in space. Since the program uses 9 such windows, the actual track gate consisted of 9x9x3 points.

The right hand column of Figure B-2 shows the output frames obtained by the tracker. Observe that the output lags the input by the depth of the track gate. This is why there are fewer outputs frames than input frames. We see that the target was acquired immediately, and successfully tracked over the full sequence of frames.

The computation rate was about 10 frames per second on a VAX 11/780. However, the program is written to allow selection of window sizes and could be streamlined a great deal.

Although the results shown in Figure B-2 are impressive, we hasten to point out that the motion is mostly translation, and our attempts to test the algorithm on a wide range of motions have been frustrated by availability of data. Further work is ongoing, and refinements to the tracking program are expected to be forthcoming.

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
· · · · · · · · · · · · · · · · · · ·
,,

** * * * * * * * * * *

マ・ド・・・ 神子 ラフィ・フィ・ファ・・ア・テラクラファクラファラスティアの
・ラ・・・・ 一十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
The second secon
ティザ トゥ てんこうかんきゅう アップ・アップ・マット トトトア もっしゅう アン・ファップ・ファ
** * * * * * * * * * * * * * * * * * * *
サイマリ ・ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
せん かんりゅう 大きな 大学 中でき イラ かんてき しんしゅ ア・ファ・ラ トラ しゅうきゅう
サラー・サート 丁子 丁子丁子丁子 サイ・ティ・ティ・ティ・ティ・ティ・ファ ・・ファ ラー・アイ・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・
on the second of
· 中子 · · · · · · · · · · · · · · · · · ·
・サラスト 1000年間の日本日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・サイスト、この中ででは中ではなって、アイ・アイト トライン・ラフラファ こるをかなる
サラトラック 11日間日間日間できてサラリックリアリア・フィック・ファック・フェー
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ア・サファマ・フェロボ
・・・・・・・・ 一日日本日本の日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日
この サララ マー アフロの 日本日本日 日本日 日本日本日本日本日本日本日本日本日本日本日本日本日本日本
のの、のの、のので、日本のの日本の本書をのまたのであるとのできる。
7 9 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
, , , , , , , , , ,
* *** * * * * * * * * *
** ** * * * * * * * * *
在一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
to design the property of the second of the
シンタセス イタルスタイス サイクタ イクター・イクター マー・マー・マー・マー・マー・マー・マー・ア・マング しゅうてん ファイス・ファント (perfect perfect per
to a service of the s
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

```
200
      C
              PROGRAMMER : DONNA K. TERRAL
 40
                          DEPARTMENT OF MATHEMATICS
                          TEXAS TECH UNIVERSITY
 á0
 80
      C
100
      C
             PERMISSION IS HEREWITH GRANTED TO UTILIZE THIS PROGRAM FOR
             OTHER THAN PERSONAL OR CORPORATIVE GAIN.
120
      C
140
150
130
      200
       ****************************** MAIN PROGRAM *****************
220
       240
              PURPOSE: GIVEN A SET OF IMAGES, TRACK A TRAGET BY USING
260
              INTEGRATION TO DETERMINE THE MOTIONS (TRANSLATION, ROTATION,
280
              MAGNIFICATION) OF THE TARGET.
      £.
       300
320
340
      С
             * COMMON DECLARATIONS *
360
380
             PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
      C
400
              COMMON /WINDOW/ WIND(IW, JW, KW), CORRD(ISIZE, JSIZE, 2)
420
440
              INTEGER WIND
              COMMON /ORIGIN/ IO, JO, KO, XO, YO
450
480
              INTEGER IO, JO, KO, XO, YO
              COMMON /BUFFER/ BUF(IB, JB, KB)
500
520
              INTEGER BUF
              COMMON /CORNER/ X1, X2, Y1, Y2, T1, T2
540
              INTEGER X1, X2, Y1, Y2, T1, T2
560
              COMMON /WEIGHT/ W(IB, JB, KB), WX(JB, KB), WY(IB, KB), WT(IB, JB)
580
500
              INTEGER W, WX, WY, WT
              COMMON /COCHGS/ XVELI, YVELI, VROTI, VMAGI, TIME, TSTEP
520
              REAL XVELI, YVELI, VROTI, VMAGI, TIME, TSTEP
540
660
              COMMON /PARMS/ ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
680
              INTEGER ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
700
              COMMON /IMAGE/ IMAGE(ISIZE, JSIZE)
720
              INTEGER*2 IMAGE
              COMMON /EQU/ ALPHA(4), BETA, COEFF(9,4), VECTOR(9), SOLN(4), FEED(4)
740
760
              INTEGER ALPHA, BETA
780
      С
300
              * MAIN VARIABLES *
820
              INTEGER I1, J1, K1
              INTEGER CC, COUNT
340
              DATA COUNT, CC, K1 /1,1,1/
340
330
      C
700
              CALL INIT
920
      С
940
              *** MAIN LOOP ****
760
              100\ 100\ LOOP = 1,4
230
      C
1000
                ALL OR A PORTION OF THE INTEGRATION RESULTS CAN BE USED
1020
                 SOLN(1) = FEED(1) * SOLN(1)
1040
                SOLN(2) = FEED(2) * SOLN(2)
1060
                 SOLN(3) = FEED(3) * SOLN(3)
1080
                 SOLN(4) = FEED(4) * SOLN(4)
```

```
1100
      С
1120
                CALL WINDOW (LOOP)
1140
1160
                CALL PRINT
1180
      С
1200
                *** LOOP COMPUTES MOTION USED TO MOVE WINDOW ***
1220
                00 \ 1 \ J1 = 1, JW, JB
                   DO 2 II = 1, IW, IB
1240
                      CALL GETBUF (I1, J1, K1)
1260
1280
                      IF (LOOP .NE. 1) GO TO 10
1300
                      CALL BLDW
1320
       10
                      CALL GETERU
1340
                      CALL MATRIX (COUNT)
1360
                      COUNT = COUNT + 1
1380
       2
                   CONTINUE
1400
       1
                CONTINUE
1420
                CALL LINEQ (COEFF, SOLN, VECTOR, 9, 4, CC)
1440
                COUNT = 1
                **** END MOTION LOOP ***
1460
      С
1480
      C
1500
                TIME = TIME + TSTEP
1520
              CONTINUE
       100
1540
              *** END HAIN LOOP ***
1560
      C
1580
             STOP
1600
             END
1620
      С
1640
      1660
      1680
      С
             SUBROUTINE GETBUF FILLS A BUFFER ARRAY WHICH WILL CONTINN THE
1700
      С
             DATA POINTS FORMING THE CUBE TO BE USED IN SUBROUTINE GETEQU.
1720
             THE POSITION IN WHICH TO BEGIN IS PASSED THRU THE ARGUMENTS.
1740
              <BUF(1,1,1)=WIND(I1,J1,K1)>
      C
1760
      1730
             SUBROUTINE GETBUF (II, J1, K1)
1800
      С
1820
1840
      С
             * ARGUMENTS *
1360
             INTEGER I1, J1, K1
1880
      £
1700
      0
             * COMMON DECLARATIONS *
1920
      C
1940
             PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
1960
      С
1980
             COMMON /WINDOW/ WIND(IW, JW, KW), CORRD(ISIZE, JSIZE, 2)
2000
              INTEGER WIND
2020
             COMMON /ORIGIN/ IO, JO, KO, XO, YO
2040
              INTEGER IO, JO, KO, XO, YO
2060
              COMMON /BUFFER/ BUF(IB, JB, KB)
2080
              INTEGER BUF
              COMMON /CORNER/ X1, X2, Y1, Y2, T1, T2
2100
2120
              INTEGER X1, X2, Y1, Y2, T1, T2
2140
      C
2160
             * LOCAL VARAIBLES *
```

```
2180
            INTEGER X,Y,T
2200
     С
            X1 = I1 - I0
2220
2240
            Y1 = J1 - J0
2260
            T1 = K1 - K0
2280
            X2 = X1 + IB - 1
            Y2 = Y1 + JB - 1
2300
2320
            T2 = T1 + KB - 1
2340
2360
            DO 30 I = 1.IB
2380
              DO 30 J = 1.JB
               DO 30 K = 1,KB
2400
2420
                 X = I1 + I - 1
                 Y = J1 + J - 1
2440
2460
                 T = K1 + K - 1
2480
                 BUF(I,J,K) = WIND(X,Y,T)
2500
            CONTINUE
      30
2520
            RETURN
2540
            END
2560
     C
2580
     2600
     2620
     С
            SUBROUTINE MATRIX TAKES THE ALPHAS AND BETA FROM THE SUBROUTINE
2640
     ε
            GETEQU AND PUTS THEM IN THE FORM AX=B WHERE LOOPS OF GETEQU
2660
     C
            FORM THE 2-DIMENSIONAL ARRAY A AND THE VECTOR B.
2680
     C
            ONCE AX=B IS FORMED LINED IS USED TO SOLVE FOR X.
2700
            IN MATRIX, COEFF(9,4) IS ARRAY A AND VECTOR(9) IS ARRAY B
2720
     2740
2760
     С
            SUBROUTINE MATRIX (COUNT)
2780
2800
     C
            * ARGUMENTS *
2820
     ε
2840
            INTEGER COUNT
2860
     C
2380
            * COMMON DECLARATIONS *
     C
2900
            COMMON /EQU/ ALPHA(4), BETA, COEFF(9,4), VECTOR(9), SOLN(4), FEED(4)
2920
            INTEGER ALPHA, BETA
2940
2960
            COEFF(COUNT,1) = FLOAT(ALPHA(1))
2980
            COEFF(COUNT,2) = FLOAT(ALPHA(2))
3000
            COEFF(COUNT,3) = FLOAT(ALPHA(3))
3020
            COEFF(COUNT,4) = FLOAT(ALPHA(4))
3040
            VECTOR(COUNT) = FLOAT(BETA)
3060
            RETURN
3080
            END
3100
     C
3120
     3140
     3160
     C
            SUBROUTINE GETEQU
3130
            COMPUTES CONSTANTS ALPHA(1) THRU ALPHA(4) AND BETA IN THE
            EQUATION ALPHA(1) * LAMBDA(1) + ALPHA(2) * LAMBDA(2) +
3200
     С
3220
     C
            ALPHA(3) * LAMBDA(3) + ALPHA(4) * LAMBDA(4) = BETA, WHERE
3240
            ALPHA(1) THRU ALPHA(4) AND BETA ARE FORMED FROM SURFACE AND
```

```
C
               VOLUME INTEGALS OVER A CUBE INDEXED BY X1, X2, Y1, Y2, T1, T2.
3260
3280
       С
               THESE INTEGALS ARE NUMERICALLY INTEGRATED USING THE TRAPEZIOD
       C
               RULE.
3300
       С
3320
3340
               LET:
                 FXYT REPRESENT THE VOLUME INTEGAL OVER THE CUBE
3360
       С
3380
                 FXY1 REPRESENT THE SURFACE INTEGAL OVER THE FACE XY @ T=1
       C
                 FXY2
                                                              FACE XY @ T=2
3400
       C
                                                              FACE YT @ X=1
3420
       С
                 FYT1
                                                              FACE YT € X=2
3440
       C
                 FYT2
                                                              FACE TX @ Y=1
3460
                 FTX1
                                                              FACE TX @ Y=2
3480
                 FTX2
                 YFYT1 REPRESENT THE INTEGAL OVER Y * (FACE YT) @ X=1
3500
       С
                                  •
                 YFYT2
                                        .
                                               .
                                                   Y * (FACE YT) @ X=2
3520
       С
                                                   X * (FACE TX) @ Y=1
3540
       C
                 XFTX1
       C
                 XFTX2
                                                   X * (FACE TX) @ Y=2
3560
3580
       C
               THEN:
3600
3620
                 ALPHA(1) = FYT2 - FYT1
       C
                 ALPHA(2) = FTX2 - FTX1
3640
                 ALPHA(3) = X2*FYT2 - X1*FYT1 - 2*FXYT + Y2*FTX2 - Y1*FTX1
       C
3660
                 ALPHA(4) = YFYT1 - YFYT2 + XFTX2 - XFTX1
       C
3680
                 BETA = FXY1 - FXY2
3700
       3720
3740
               SUBROUTINE GETERU
3760
3780
       C
               * COMMON DECLARATIONS *
3800
       C
3820
       С
               PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
3840
       C
3860
               COMMON /BUFFER/ BUF(IB, JB, KB)
3880
               INTEGER BUF
3900
3920
               COMMON /CORNER/ X1,X2,Y1,Y2,T1,T2
               INTEGER X1, X2, Y1, Y2, T1, T2
3940
               COMMON /WEIGHT/ W(IB, JB, KB), WX(JB, KB), WY(IB, KB), WT(IB, JB)
3960
               INTEGER W, WX, WY, WT
3980
               COMMON /EQU/ ALPHA(4), BETA, COEFF(9,4), VECTOR(9), SOLN(4), FEED(4)
4000
4020
               INTEGER ALPHA, BETA
4040
       Ω
               * LOCAL VARIABLES *
4060
       C
               INTEGER FXY1,FXY2,FYT1,FYT2,FTX1,FTX2,YFYT1,YFYT2,XFTX1,XFTX2,FXYT
4080
4100
       С
4120
               FXYT = 0
4140
               FXY1 = 0
               FXY2 = 0
4160
               FYT1 = 0
4180
               FYT2 = 0
4200
4220
               FTX1 = 0
4240
               FTX2 = 0
                YFYT1 = 0
4260
4280
               YFYT2 = 0
4300
               XFTX1 = 0
4320
               XFTX2 = 0
```

```
4340
      С
4360
              DO 50 I = 1 \cdot IB
4380
                DO 50 J = 1.JB
4400
                 FXY1 = FXY1 + BUF(I,J,1) * WT(I,J)
4420
                 FXY2 = FXY2 + BUF(I,J,KB) * WT(I,J)
4440
       50
              CONTINUE
4460
              DO 60 J = 1.JB
4480
               DO 60 K = 1,KB
4500
                 FYT1 = FYT1 + BUF(1,J,K) * WX(J,K)
4520
                 FYT2 = FYT2 + BUF(IB,J,K) * WX(J,K)
4540
                 YFYT1 = YFYT1 + (J + Y1 - 1) * BUF(1,J,K) * WX(J,K)
                 YFYT2 = YFYT2 + (J + Y1 - 1) * BUF(IB,J,K) * WX(J,K)
4560
4580
       60
              CONTINUE
4600
              DO 70 I = 1.1B
4620
                DO 70 K = 1,KB
4640
                 FTX1 = FTX1 + BUF(I,1,K) * WY(I,K)
4660
                 FTX2 = FTX2 + BUF(I,JB,K) * WY(I,K)
4680
                 XFTX1 = XFTX1 + (I + X1 - 1) * BUF(I,1,K) * WY(I,K)
                 XFTX2 = XFTX2 + (I + X1 - 1) * BUF(I,JB,K) * WY(I,K)
4700
4720
       70
              CONTINUE
4740
              00 80 I = 1 \cdot IB
                100 80 J = 1.JB
4760
4780
                 DO 80 K = 1,KB
4800
                   FXYT = FXYT + BUF(I,J,K) * W(I,J,K)
4820
       80
              CONTINUE
4840
      C
4860
              ALPHA(1) = FYT2 - FYT1
              ALPHA(2) = FTX2 - FTX1
4880
4900
              ALPHA(3) = X2 * FYT2 - X1 * FYT1 - FXYT + Y2 * FTX2 - Y1 * FTX1
4920
              ALPHA(4) = YFYT1 - YFYT2 + XFTX2 - XFTX1
4940
              BETA = FXY1 - FXY2
4960
      C
4980
              RETURN
5000
              END
5020
      С
5040
      C *******************************
5060
      5080
              SUBROUTINE BLDW BUILDS THE WEIGHING ARRAYS FOR THE
5100
              TRAFEZIOD RULE USED IN THE SUBROUTINE GETEQU. THESE ARRAYS
5120
              ARE PASSED TO GETEQU THRU A COMMON BLOCK.
5140
      5160
5180
              SUBROUTINE BLDW
5200
      C
5220
             * COMMON DECLARATIONS *
5240
5230
              PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
5280
      С
              COMMON /WEIGHT/ W(IB, JB, KB), WX(JB, KB), WY(IB, KB), WT(IB, JB)
5300
5320
              INTEGER W.WX.WY.WT
5340
      C
             LOCAL VARAIBLES
5360
5380
               INTEGER X,Y,T
5400
      C
```

```
5420
                X = IB - 1
                Y = JB - 1
5440
                T = KB - 1
5460
5480
       С
                DO 40 I = 2.X
5500
                  DO 40 J = 2.Y
5520
                    DO 40 K = 2,T
5540
                       W(1,1,1) = 2
5560
                       W(I,JB,1) = 2
5580
                       W(1,J,1) = 2
5600
                       W(IB,J,1) = 2
5620
                       W(1 + JB + K) =
5640
                       W(IB,1,K) = 2
5660
                       W(I,1,KB) = 2
5680
                       W(1,J,KB) = 2
5700
                       W(IB,J,KB) = 2
5720
                       W(I,JB,KB) = 2
5740
5760
                       W(IB,JB,K) = 2
                       W(1,1,K) = 2
5780
5800
                       W(I,J,k) = 8
                       W(1,J,K) = 4
5820
5840
                       W(I,1,K) = 4
                       W(I,J,1) = 4
5860
                       W(I_7JB_7K) = 4
5880
                       W(IB,J,K) = 4
5900
                       W(I,J,KB) = 4
5920
                       WY(I,1) = 2
5940
                       WY(1,K) = 2
5960
                       WY(I,K) = 4
5980
                       WY(I,KB) = 2
6000
6020
                       WY(IB_*K) = 2
1040
                       WT(I,1) = 2
                       WT(1,J) = 2
   ٥,
6080
                       WT(I,J) = 4
                       WT(I,JB) = 2
6100
6120
                       WT(IB,J) = 2
                       WX(JB,K) = 2
6140
6160
                       WX(J_*KB) = 2
                       WX(1,K) = 2
6180
6200
                       WX(J_11) = 2
 6220
                       WX(J_1K) = 4
                 CONTINUE
         40
 6240
                 W(1,1,1) = 1
 6260
 6280
                 W(1,JB,1) = 1
 5300
                 W(1,JB,KB) = 1
 6320
                 W(1,1,KB) = 1
                 W(IB,1,1) = 1
 6340
                 W(IB,JB,1) = 1
 6360
 6380
                 U(IB,1,KB) = 1
                 W(IB,JB,KB) = 1
 6400
                 \mathsf{WX}(1,1) = 1
 6420
                 WX(1,KB) = 1
 6440
                 WX(JB+1) = 1
 6460
                 WX(JB,KB) = 1
```

5480

```
6500
              \forall Y(1,1) = 1
6520
              WY(1,KB) = 1
6540
              WY(IB,1) = 1
              WY(IB,KB) = 1
5560
6580
              WT(1,1) = 1
6600
              WT(1,JB) = 1
6620
              WT(IB,1) = 1
6640
              WT(IB,JB) = 1
6660
              RETURN
6680
              END
3700
      C
        6720
5740
      6760
      C
              SUBROUTINE PRINT WRITES TO UNIT = 66 THE MOTION PARAMETERS
6780
      C
              OF THE IMAGE AND THE WINDOW AT EACH TIME STEP. THE PIXEL
6800
              VALUES IN THE WINDOW MAY ALSO BE PRINTED IF NEEDED.
6820
      6840
      C
6860
              SUBROUTINE PRINT
6880
6900
              * COMMON DECLARATIONS *
6920
      С
5940
              PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
6960
      C
3980
              COMMON /WINDOW/ WIND(IW, JW, KW), CORRD(ISIZE, JSIZE, 2)
7000
              INTEGER WIND
7020
              COMMON /ORIGIN/ IO, JO, KO, XO, YO
7040
              INTEGER IO, JO, KO, XO, YO
7060
              COMMON /COCHGS/ XVELI, YVELI, VROTI, VMAGI, TIME, TSTEP
7080
              REAL XVELI, YVELI, VROTI, VMAGI, TIME, TSTEP
7100
              COMMON /PARMS/ ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
7120
              INTEGER ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
7140
              COMMON /EQU/ ALPHA(4), BETA, COEFF(9,4), VECTOR(9), SOLN(4), FEED(4)
7160
              INTEGER ALPHA, BETA
7180
      E
7200
      C
              * LOCAL VARIABLES *
              REAL XTRANW, YTRANW, ROTW, MAGW, XVELW, YVELW, VROTW, VMAGW, XTRANI,
7220
7240
           8
                   MAGI, ROTI, YTRANI
      C
7260
7280
              DATA XTRANW, YTRANW, ROTW, MAGW /0,0,0,0/
7300
      C
7320
              XTRANI = XVELI*TIME
7340
              YTRANI = YVELI*TIME
7360
              MAGI = VMAGI*TIME
7380
              ROTI = VROTI*TIME
7400
      C
7420
              XTRANU = SOLN(1) + XTRANU
7440
              YTRANW = SOLN(2) + YTRANW
7460
              MAGW = SOLN(3) + MAGW
7480
              ROTW = SOLN(4) + ROTW
7500
      C
7520
              XVELW = SOLN(1)*(1/TSTEP)
7540
              YVELW = SOLN(2)*(1/TSTEP)
7560
              VMAGW = SOLN(3) * (1/TSTEP)
```

```
7580
              VROTW = SOLN(4)*(1/TSTEP)
7600
      C
7620
              IF (WTEST .EQ. 1) THEN
7640
                 ITEMP = COL - PCOL + (IW+1)/2
                 JTEMP = ROW - PROW + (JW+1)/2
7660
                 WRITE(66,30) CORRD(ITEMP, JTEMP, 1), CORRD(ITEMP, JTEMP, 2)
7680
                 FORMAT (1X, 'CENTER OF WINDOW AT (', F9.5', ', F9.5, ')',/)
7700
       30
7720
      C
7740
                 WRITE (66,36)
7760
       36
                 FORMAT (//1X, 'WINDOW VALUES', /)
7780
                 DO 4 K = 1.KW
7800
                   DO 5 J = 1,JW
                      WRITE (66,6) (WIND(I,J,K),I=1,IW)
7820
7840
                      FORMAT (1X, <IW>(I4))
7860
       5
                   CONTINUE
7880
                   WRITE (66,8)
7900
       8
                   FORMAT (/)
7920
                 CONTINUE
       4
7940
      C
7960
                 WRITE (66,10) TIME, XTRANI, YTRANI, MAGI, ROTI, XVELI, YVELI,
7980
           å
                              VMAGI, VROTI
       10
                 FORMAT (1X,F5.4,8(3X,E11.4),/)
8000
8020
                 WRITE (66,11)
3040
       11
                 FORMAT(10X, 'XTRANW', 8X, 'YTRANW', 8X, 'MAGW', 10X, 'ROTW',
8060
           £
                        10X, 'XVELW', 9X, 'YVELW', 9X, 'VHAGW', 9X, 'VROTW')
8080
                 WRITE (66,12) XTRANW, YTRANW, MAGW, ROTW, XVELW, YVELW, VMAGW, URDTW
8100
       12
                 FORMAT (6X,8(3X,E11.4),/)
8120
                 WRITE (66,13)
8140
       13
                 FORMAT('1')
8160
      C
3180
              ELSE
8200
                 WRITE (66,14) TIME, XTRANI, YTRANI, MAGI, ROTI, XVELI, YVELI,
8220
                              VMAGI, VROTI
8240
       14
                 FORMAT(1X,F5.4,8(3X,E11.4))
8260
                 WRITE(66,15) XTRANW,YTRANW,HAGW,ROTW,XVELW,YVELW,VHAGW,VROTW
8280
       15
                 FORMAT(11X,8(3X,E11.4),/)
8300
              ENDIF
8320
              RETURN
8340
              END
8360
      C
8380
      3400
        8420
              SUBROUTINE INIT IS USED TO INITIALIZE PARAMETERS.
8440
       9460
       C
8430
              SUBROUTINE INIT
8500
      C
8520
      C
              * COMMON DECLARATIONS *
8540
              PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
8560
      C
8580
              COMMON /WINDOW/ WIND(IW, JW, KW), CORRD(ISIZE, JSIZE, 2)
              INTEGER WIND
8400
              COMMON /ORIGIN/ IO, JO, KO, XO, YO
8420
              INTEGER 10, JO, KO, XO, YO
3640
```

```
COMMON /PARMS/ ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
9660
8430
                INTEGER ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WIEST
8700
                COMMON /COCHGS/ XVELI, YVELI, VROTI, VMAGI, TIME, TSTEP
                COMMON /EQU/ ALPHA(4), BETA, COEFF(9,4), VECTOR(9), SOLN(4), FEED(4)
8720
8740
                INTEGER ALPHA, BETA
8750
       C
3780
                THE PIXEL VALUE AT (COL, ROW) IS PUT INTO WIND(1,1,1)
8800
                WRITE (6,20)
8820
        20
                FORMAT (1X, 'BEGIN WINDOW')
                WRITE (6,50)
8840
8860
        50
                FORMAT (1X) 'ROW
                                       COL')
                READ (5,*) ROW, COL
8380
3900
       C
8920
                THE MOTION TO BE TRACKED
8940
                WRITE (6,30)
3960
        30
                FORMAT (1X, 'INPUT: XVELI, YVELI, UROTI/PI, VMAGI')
                READ (5,*) XVELI, YVELI, VROTI, VMAGI
3980
9000
       C
9020
                PROW = 1
7040
                PCOL = 1
                NUMROW = 128
9060
                NUMCOL = 128
9080
9100
       C
9120
                XO = COL + (IW-1)/2
9140
                YO = RUW + (JW-1)/2
9160
       C
9180
                DD 60 I=1, NUMCOL
9200
                   DO 70 J=1, NUMROW
9220
                      CORRD(I,J,1) = I
9240
                      CORRD(I,J,2) = J
        70
                   CONTINUE
9260
9280
        60
                CONTINUE
9300
       С
9320
                TSTEP = 0.033
9340
                TIME = 2*TSTEP
9360
                PI = 3.14159
9380
                VROTI = VROTI*PI
9400
       C
9420
                10 = (1W+1)/2
9440
                J0 = (JW+1)/2
                KO = (KW+1)/2
9460
9480
       С
9500
                DO 10 I=1,4
9520
                   SOLN(I) = 0.0
9540
                CONTINUE
        10
9560
9580
                FEED(1) = 1.0
9600
                FEED(2) = 1.0
9620
                FEED(3) = 1.0
9640
                FEED(4) = 1.0
9660
       C
9680
                WRITE (6,40)
9700
                FORMAT (1X, 'INPUT 1 cr. TO WRITE WINDOW OR 0 cr. TO SKIP')
        40
9720
                READ (5,*) WIEST
```

```
9740
               IF (WTEST .EQ. 0) THEN
9760
                  WRITE (66,5) IB
9780
                  FORMAT (1X, 'WINDOW SIZE = ', 12, //)
        5
9800
                  WRITE (66,3)
9820
                  FORMAT(1X, 'TIME', 5X, 'XTRANI', 8X, 'YTRANI', 8X, 'MAGI', 10X, 'ROTI'
        3
9840
                         ,10X,'XVELI',9X,'YVELI',9X,'VMAGI',9X,'VROTI')
            ž
9860
                  WRITE (66,4)
9880
                  FORMAT(15X, 'XTRANW', 8X, 'YTRANW', 8X, 'MAGW', 10X, 'ROTW',
        4
9900
                        10X, 'XVELW', 9X, 'YVELW', 9X, 'VMAGW', 9X, 'UROTW',/)
9920
               ENDIF
9940
       С
9960
               RETURN
9980
               END
10000
       C
10020
         10040
         **********************
10060
               SUBROUTINE WINDOW (1) USES THE INTEGRATION RESULTS TO MOVE THE
10080
               WINDOW IN ORDER TO TRACK THE TARGET AND (2) PERFORMS THE MOTION
10100
       C
               ON THE 1ST IMAGE USED TO GET THE WINDOW AND WRITES THE RESULT
10120
       £
               TO UNIT = H + 15.
10140
       10160
10130
               SUBROUTINE WINDOW (M)
10200
       C
10220
       C
               * COMMON DECLARATIONS *
10240
       E
               PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
10260
10280
       C
10300
               COMMON /WINDOW/ WIND(IW, JW, KW), CORRD(ISIZE, JSIZE, 2)
10320
               INTEGER WIND
               COMMON /ERU/ ALPHA(4), BETA, CDEFF(9,4), VECTOR(9), SOLN(4), FEED(4)
10340
               INTEGER ALPHA, BETA
10360
10380
               COMMON /IMAGE/ IMAGE(ISIZE, JSIZE)
10400
               INTEGER*2 IMAGE
               COMMON /BUFFER/ BUF(IB, JB, KB)
10420
10440
               INTEGER BUF
10460
               COMMON /PARMS/ ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
10480
               INTEGER ROW, COL, PROW, PCOL, NUMROW, NUMCOL, WTEST
10500
       С
10520
               * LOCAL VARIABLES *
10540
               LOGICAL#1 BIMAGE(ISIZE), BLINE(2#ISIZE, JSIZE)
10560
               CHARACTER*(ISIZE) IMAGELINE
10580
               INTEGER*2 NEWIM(ISIZE, JSIZE)
10600
               REAL ECOSW, ESINW, XW, YW
10620
               EQUIVALENCE (BIMAGE, IMAGELINE), (BLINE, NEWIM)
10640
       С
       ε
               AFFINE TRANSFORMATION TO MOVE WINDOW
10660
10680
       С
               ITEMP = COL - PCOL + (IB+1)/2
10700
10720
               JTEMP \approx ROW - PROW + (JB+1)/2
10740
               XW = CORRD(ITEMP,JTEMP,1)
10760
               YW = CORRD(ITEMP, JTEMP, 2)
10780
               ECOSW = EXP(SOLN(3)) * COS(SOLN(4))
10800
               ESINW = EXP(SOLN(3)) * SIN(SOLN(4))
```

```
10820
        C
                 DO 10 J=1, NUMROW
10340
10360
                    DO 20 I=1, NUMCOL
                       CORRD(I,J,1)=ECOSW*(CORRD(I,J,1)-XW)-ESINW*(CORRD(I,J,2)
10880
10900
              ž
                              -YW)+ECOSW#SOLN(1)-ESINW#SOLN(2)
10920
                       CORRD(I,J,2)=ESINW*(CORRD(I,J,1)-XW)+ECOSW*(CORRD(I,J,2)
10940
              ž
                              -YW) +ESINW*SOLN(1) +ECOSW*SOLN(2)
10960
                       CORRD(I,J,1) = CORRD(I,J,1) + XW
10980
                       CORRD(I,J,2) = YW + CORRD(I,J,2)
         20
11000
                    CONTINUE
11020
         10
                 CONTINUE
        C
11040
                 OPEN A IMAGE FILE AND FILL PIXEL VALUES INTO THE ARRAY IMAGE
11060
        E
11080
11100
                 DO 30 K=1,KW
11120
                    KCOUNT = M + K + 9
                    OPEN(UNIT=KCOUNT, STATUS='OLD', ACCESS='DIRECT',
11140
11160
              å
                         RECORDTYPE='FIXED', READONLY)
11180
        C
11200
                    DO 80 I=1, ISIZE
11220
                       DO 90 J=1,JSIZE
                           IMAGE(I,J) = 0
11240
11260
         90
                       CONTINUE
11280
         80
                    CONTINUE
11300
        C
11320
                    DO 40 J=1, NUMROW
                       READ (KCOUNT'J) IMAGELINE
11340
                        DO 50 I=1, ISIZE
11360
11330
                           IMAGE(I,J) = BIMAGE(I) \cdot AND \cdot 255
11400
                       CONTINUE
         50
11420
          40
                    CONTINUE
         C
11440
                 USE THE TRANSFORMATION TO TRACK; STORE THE RESULT IN NEWIH
11460
11480
        С
11500
                    DO 60 J=1, NUMROW
11520
                       DO 70 I=1, NUMCOL
11540
                           IF (CORRD(I, J, 1) .LT. 1 .OR. CORRD(I, J, 1) .GT. ISIZE
11560
                           .OR. CORRD(I,J,2) .LT. 1 .OR. CORRD(I,J,2) .GT. JSIZE)
11580
                           THEN
                               0 = (L,I)MIW3M
11600
11620
                           ELSE
                               NEWIM(I,J) = IBILIN(CORRD(I,J,1),CORRD(I,J,2))
11640
11660
                           ENDIF
11680
                        CONTINUE
          70
11700
          60
                    CONTINUE
         C
11720
11740
                    CLOSE (UNIT=KCOUNT)
11760
        C
11780
        ε
                 FILL WINDOW WITH NEW PIXEL VALUES
11800
         C
11820
                    DO 110 I=1,IW
11840
                        00 120 J=1,JW
11850
                           ITEMP = COL - PCOL + I
11880
                           JTEMP = ROW - PROW + J
```

```
11900
                        WIND(I,J,K) = NEWIH(ITEMP,JTEMP)
11920
        120
                     CONTINUE
11940
        110
                  CONTINUE
11960
11980
       C
               WRITE TRACKED IMAGE INTO A FILE
12000
12020
                  IF (K .EQ. 1) THEN
12040
                     OPEN(UNIT=KCOUNT+15,STATUS='NEW',ACCESS='DIRECT',
12060
            £
                          RECORDTYPE='FIXED', RECL=NUMCOL/4, BLOCKSIZE=NUMCOL)
12080
                     DO 130 J=1, NUMROW
12100
                        DO 140 I=1, NUMCOL
12120
                           BIMAGE(I) = BLINE(I*2-1,J)
12140
        140
                        CONTINUE
12160
                        WRITE (KCOUNT+15'J) IMAGELINE
12180
        130
                     CONTINUE
12200
                     CLOSE (UNIT=KCOUNT+15)
12220
                     ENDIF
12240
       C
12260
        30
               CONTINUE
12280
               RETURN
12300
               END
12320
12340
         12360
         *************************
12380
12400
             SUBROUTINE LINEQ(A,X,B,M,N,CC)
12420
             INTEGER CC
12440
       C
12460
       C
           SOLVE AX=B. T HOLDS AN UPPER TRIANGULAR MATRIX WHILE S
12480
           IS WORKSPACE. THE METHOD FACTORS A=U*T WHERE THE COLUMNS OF
12500
           U ARE ORTHOGANAL AND T IS TRIANGULAR. THE RESULTING SYSTEM
12520
           T*X=B' IS EASILY SOLVED BY BACK SUBSTITUTION. ASSUME M
12540
           EQUATIONS AND N UNKNOWNS.
                                     (N \le M \le 9)
12560
           THE MATRIX OF COEFFICIENTS, A IS STORED IN THE FIRST N ROWS
12580
           AND THE FIRST M COLUMNS OF THE 9X9 A ARRAY. THE ROUTINE
12600
           BRINGS IN THE WHOLE 9X9, BUT ONLY USES A(1,1) TO A(N,M)
12620
            (RECALL THAT FORTRAN STORES THE ARRAY COLUMN-WISE, BUT
12540
        C
           ADRESSES THE ELEMENTS IN THE STANDARD ROW, COLUMN FORMAT)
12660
       C
           NOTE: THE A ARRAY IS ALTERED DURING EXECUTION.
12680
12700
             DIMENSION A(9,9), T(9,9), X(N), B(M)
12720
             CC=1
           M MUST BE <= 9, AND N<=M. CC IS A COMPLETION CODE; IF THE
12740
       C
12760
           SUBROUTINE EXECUTES PROPERLY CC WILL BE RESET TO 0 BEFORE RETURN
12780
             DO 40 I=1.N
12800
               IF (I.EQ.1) GO TO 25
12820
               DO 20 J=1,M
12840
                 3=0
12860
                 I1=I-1
12880
                  DO 10 K=1, I1
12900
                        IF (T(K,K) .LT. .0001) GO TO 5000
12920
                   S=S+A(J+K)*T(K+I)/T(K+K)
12940
           10
                   CONTINUE
12960
                 8-(I,L)A=(I,L)A
```

```
12980
          20
                 CONTINUE
          25
13000
               DO 40 K=I,N
13020
                 S=0
13040
                 DO 30 J=1,M
13060
                   S=S+A(J,I)*A(J,K)
13080
          30
                   CONTINUE
13100
                 T(I,K)=S
13120
          40
                 CONTINUE
13140
               DO 50 I=1,N
13160
                 S=0
13180
                 DO 50 J=1, H
13200
                   S=S+A(J,I)*B(J)
13220
          50
                   CONTINUE
13240
                 X(I)=S
                 CONTINUE
13260
          60
               DO 80 I=1,N
13280
13300
                 I1=N+1-I
13320
                 IF (I1.EQ.N) GO TO 75
13340
                   I2=I1+1
13360
                   DO 70 J=12,N
                     X(I1)=X(I1)-T(I1,J)*X(J)
13380
          70
13400
                     CONTINUE
13420
                        IF (T(I1,I1),LT..0001) GO TO 5000
                   X(I1)=X(I1)/T(I1,I1)
          75
13440
13460
          80
                   CONTINUE
13480
             CC=0
13500
             RETURN
        5000 CC=-1
13520
13540
           A COMPLETION CODE OF -1 INDICATES THAT THE SUBROUTINE
       С
13560
           TRIED TO DIVIDE BY O.
13580
             RETURN
13500
             END
13620
13640
       13550
       13680
13700
               INTEGER FUNCTION IBILIN*2(XX,YY)
13720
13740
           THIS FUNCTION RECEIVES 2 REAL COORDINATES (PRODUCED BY THE TRANS-
13760
       С
           FORMATION IN THE CALLING ROUTINE) WHICH ARE COORDINATES RELATIVE
13780
       C
                              SINCE THE COORDINATES ARE REAL VALUED,
           TO THE OLD IMAGE.
       C
           THE POSITION WILL NOT BE ON A PARTICULAR PIXEL, BUT RATHER AHONG
13800
       C
               THIS FUNCTION RETURNS A BILINEAR INTERPOLATION FOR THE 4
13820
           4.
       C
13840
           SURROUNDING POINTS.
13860
13380
               PARAMETER (ISIZE=128, JSIZE=128)
               COMMON / IMAGE/ IMAGE(ISIZE, JSIZE)
13900
13920
               INTEGER*2 IMAGE
               REAL H, U, HTEMP1, HTEMP2, UTEMP
13740
13960
       C
13780
               MX1=MAX(0,INT(XX))
14000
               MX2=MIN(ISIZE, INT(XX)+1)
14020
               HY1=MAX(O,INT(YY))
14040
               MY2=MIN(JSIZE, INT(YY)+1)
```

14060	H=XX-MX1
14080	V=YY-HY1
14100	C C
14120	HTEMP1=H*IMAGE(MX2,MY1)+(1.0-H)*IMAGE(MX1,MY1)
14140	HTEMP2=H*IMAGE(MX2,MY2)+(1.0-H)*IMAGE(MX1,MY2)
14160	VTEHP =V*HTEHP2+(1.0-V)*HTEHP1
14180	IBILIN=ININT(VTEMP)
14200	RETURN
14220	DM3
14240	C
14260	C *****************************

Appendix C

Adaptive Pattern Matching using Control
Theory on Lie Groups

bу

Thomas G. Newman and Leopold Zlobee

Proceedings of the International Symposium on the Mathematical Theory of Networks and Systems

August, 1981

ADAPTIVE PATTERN MATCHING USING CONTROL THEORY ON LIE GROUPS*

Thomas G. Newman and Leopold Zlobec Texas Tech University Lubbock, Texas

Abstract

A method is given for matching a subpattern of a two-dimensional image against a stored prototype, where the latter is defined on a window whose position and shape is determined by the action of a Lie group of transformations. The method involves the construction of a path in the control group along which the matching error decreases to a local minimum.

1. INTRODUCTION

A problem of classical interest in pattern recognition is that of determining the presence or absence of a particular subpattern or subpattern class. In the analysis of two-dimensional imagery this can take the form of detection of corners and edges or the location of a specific silhouette. More particularly, we may be interested in obtaining an exact match of a specific portion of the image to a submimage, often a prototype, which may appear in an arbitrary manner, varying in size, location and orientation. This is the problem which is herein addressed.

A related question was considered by Dirilten and Newman [3] where it was shown

how two planar images could be matched under arbitrary affine transformation of the plane, if a match were at all possible. In addition to affine transformations, an allowance was also made for dilation of intensity scale such as that which results from under or over exposure of film within latitude limits. The results cited, however, are of little use in matching subpatterns, since the algorithms are highly sensitive to the background context. Nevertheless, the utility of a group theoretic approach to pattern matching was clearly demonstrated.

In the following we present a method for performing a local search for an imbedded subpattern of a two-dimensional image. The

^{*}This research was supported by the Army Research Office, Contract DAAG29-80-C-0087 and by the Office of Naval Research, Contract N0014-76-C-1136.

method is one involving adaptive control of a retina which seeks the desired sub-pattern by evolving along a curve in the space of parameters in a direction which assures improvement in the goodness of fit.

2. BACKGROUND

Let G be a Lie group of transformation on an analytic manifold M. Suppose G has dimension n while M has dimension m. Let x and y denote the coordinates of elements f and g in G, respectively, in a patch containing the identity element e of G. Also, let p denote coordinates of an element u of M in some patch in M. We may then express the coordinates z of the product h = fg and the coordinates q of the element v = gu, relative to suitable patches, by means of analytic functions

$$z = J(x,y) \tag{2.1}$$

$$q = K(y,p)$$
 (2.2)

K and J are vector-valued, having values in n-dimensional space \mathbb{R}^n or \mathbb{C}^n and m-dimensional space \mathbb{R}^m or \mathbb{C}^m . Hereafter we shall assume that these underlying spaces are real. We denote the ith component of J by J_i and the jth component of K by K_j . In order to define the Lie algebra of G we first introduce real-valued maps on G by

$$P_{ij}(x) = \frac{3J_i}{3Y_j}(x,y) i_{y=e},$$
 (2.3)

where i and j each range from 1 to n. The cross-section P_{+j} , which consists of the P_{ij} as 1 ranges from 1 to n, and j is fixed, may be thought of as a vector field in \mathbb{R}^n . Such a vector field attaches to a point x the vector $P_{+j}(x)$. As such, P_{+1} , P_{+2}, \ldots, P_{+n} form a basis for the tangent space at the point x $\{1,2\}$. The infinitesimal transformations of G may now be defined by

$$X_{j} = \frac{1}{1+1} P_{1j}(x) \frac{y}{3x_{j}},$$
 (2.4)

for j = 1,2,...,n.

The differential operators so defined are to be considered as linear operators on the space of analytic functions on G, or, more generally, on the space of differentiable functions on G. The Lie algebra of 3 is simply the n-dimensional vector space consisting of all linear combinations of these operators, and will be denoted by L(G) [2].

The Lie algebra of G may also be defined in terms of its actions on the manifold M. Analogous to (2.3) we define

$$Q_{x_{1}^{2}}(p) = \frac{3K_{x}}{3Y_{1}}(y,p)^{\frac{1}{2}}y=e^{-(2.5)}$$

for x = 1, 2, ..., m and j = 1, 2, ..., n. Finally, as in (2.4) above we set

$$X'_{j} = \frac{m}{2} Q_{3,j} \frac{3}{3p_{3}}.$$
 (2.6)

The operators X_1^+ , X_2^+ , ..., X_n^+ apply to functions defined on M and span a Lie algebra isomorphic to L(G).

The following result from [4] will be used later, and is stated for reference:

Theorem 2.1. Let $f: M \rightarrow R$ be differentialbe and define $F: G \times M \rightarrow R$, in terms of coordinates, by

$$f(x,p) = f(K(x,p)). \qquad (2.7)$$

Then for each j = 1, 2, ..., n we have $X_4F = X_4F.$ (2.8)

Let us consider a curve t + g(t) in G satisfying g(0) = e. In terms of a coordinate patch at e, g(t) may be described by a curve x(t) in \mathbb{R}^n satisfying x(0) = 0. We shall consider the case in which x(t) is given as the solution of an evolution equation of the form

$$\dot{\mathbf{x}}(t) = \frac{1}{1-1} \lambda_{\dot{\mathbf{x}}}(t) P_{+\dot{\mathbf{x}}}(\mathbf{x}(t)), \ \mathbf{x}(0) = 0, (2.9)$$

where $P_{+1},\dots P_{+n}$ are cross-sections of the array of functions given by (2.3), and $V_1(t),\dots,V_n(t)$ are suitable control functions

Now let p denote the coordinates of a point u in some coordinate patch. For a differentiable map f: $M \to R$ we may define H: R < M + R by setting

H(t,p)=f(g(t)u). (2.10) We recognize that H(t,p)=F(x(t),p) where F is the extension of f to G $^{\times}$ M as in Theorem 2.1 above. From the point of view of application, if we regard f: M $^{+}$ R as an image, then H(t,p) represents the moving image obtained by translation due to the curve g(t). Also from [4], we have

Theorem 2.2. In the context above,
$$\frac{3H}{3t} = \frac{n}{\sum_{i=1}^{n} \lambda_i(t) X_i^* H}, \quad (2.11)$$

3. THE CONTROL MODEL

By an image we mean a map f: M - R, where the value f(p) at a point $p \in M$ represents the gray value at the picture element at p. In practice, values are observed on a subset W M, which we regard as a window which may be translated by the action of G on M. Thus, upon translation by an element $x \in G$, the value observed at $p \in W$ is given by F(x,p) = f(X(x,p)), as in (2.7) above.

We consider a given prototype sub-image V defined on the window W, V: W \rightarrow R. The problem then is to determine x θ G such that F(x,p) = V(p) for all $p \in \mathbb{N}$, or determine that no such x exists. As a matter of practice, we seek x θ G which minimizes the objective function

$$\Psi(x) = \frac{1}{2} \int_{\Omega} (F(x,p) - V(p))^2 dp,$$
 (3.1)

where dp represents a volume element and the integral is over the window W, which is assumed to be of bounded volume.

In general, for any two functions \mathbf{f}_1 , \mathbf{f}_2 : \mathbf{W} - \mathbf{M} we define

$$\langle \xi_1, \xi_2 \rangle = \int_{W} \xi_1 \xi_2 dp$$
 and $\| (|\xi_1|) \|_{\infty} < \xi_1, |\xi_2|^{1/2}$.

Thus, $Y(x) = (F - 7)^{-2}/2$, where x is regarded as a parameter.

The following is a well-known property of the Lie group G [2]:

Lemma 1. In order that the differential d(x) = 0 at a point $x \in G$, it is necessary and sufficient that each $X_1/(x) = 0$ where $X_1/(x_2/..., X_n)$ are the generators of L(G) given by $\{2,4\}$.

By direct calculation, we obtain $X_i^{\frac{n}{2}}(x) = \int (F(x,p) - V(p)) X_i^{\frac{n}{2}}(x,p) dp$. In practice, we this expression is difficult to compute numerically, due to the presence of the term $X_i^{\frac{n}{2}}$, which cannot be computed directly from observed data. However, by Theorem (2.1) we have $X_i^{\frac{n}{2}} = X_i^{\frac{n}{2}}$, and the latter can be calculated from a single value of x.

Suppose now that a curve in G is given by coordinates x(t) obtained as a solution of Equation (2.9). We seek to find $\lambda(t) = (\lambda_1(t), \dots, \lambda_n(t))$ so that v(t) = V(x(t)) decreases to a minimum value. Defining R(t,p) = F(x(t),p) we obtain,

$$\hat{p}(t) = \int_{\mathcal{W}} (H(t,p) - V(p)) \frac{3H}{3t} (t,p) dp \qquad (3.2)$$

which, by application of Theorem (2.2), becomes

$$\hat{\psi}(t) = \frac{n}{i+1} i_{i}(t) \int_{W} (H(z,p) - V(p)) X_{i}^{2}H(t,p) dp$$

$$= \frac{n}{i+1} i_{i}(t) \langle H - V, X_{i}^{2}H \rangle$$
(3.3)

Upon observing that <H - \lor , X_1^+ H> = <F - \lor , X_1^+ F> = $X_1^ \forall$ at x = x(t), we deduce:

Theorem 3.1. If λ_i (t) is chosen so that $\operatorname{sgn}\lambda_i$ (t) = - sgn (H - V,X $_i$ H>, we have \hat{v} (t) ≤ 0 for all t, with equality at t = t $_3$ if and only if dY = 0 at x = x(t $_3$).

Among the class of bounded controls, $||v_{ij}| = (t)|| \leq 1, \text{ we see that the rate of decrease of } (t) \text{ is maximized by the choice } ||v_{ij}|(t)| = - \text{sgn} < H = 7, X_i^2H^2, \qquad (3.4)$

for i = 1,2,...,n. Of course, other strategies can be formulated, including steepest descent, and some methods using unbounded controls. By proceeding along trajectories defined by the solution of (2.9) with (t) given by (3.4), we approach a critical point of f (i.e. d = 0). Since maxima and saddle points are unstable inder perturbation, in practice this extreme point will always be a minimum.

4. SIMULATION RESULTS

The results discussed in the previous section have been implemented by a discrete algorithm and tested on simulated data [5]. A digitized two-dimensional image was first generated in the form of a large two-dimensional array, and the prototype was generated in a 20 × 20 window array.

The image space was assumed to be subject to translation, magnification and rotation, giving rise to a four parameter Lie group of transformations in the plane, \mathbb{R}^2 .

A number of cases were considered, including some involving multiple (false) targets and others in which the prototype was absent from the image being searched. In some cases the image was contaminated by 5% random noise. In all cases the search was started with overlap between the prototype target and the image target.

The differential equation (2.9) was solved by means of a Runge-Kutta fourth order method, with a dynamic step size, which was increased as necessary to accelerate convergence and decreased as necessary to maintain stability. Integration was replaced by summation, although we conjecture that convergence could have been accelerated by the use of a trapezoid rule.

Generally, search times ranged from 30 to 50 steps, with the longer search times prevailing for the more difficult cases. In all cases, the final results were quite reasonable, even in those cases where the prototype was absent. In the latter cases, the search terminated with a "best" match, with a commensurately large final error.

As an example, Figure 1 shows that starting position for a noisy image containing two objects. The prototype is indicated by the central silhouette, while the true target is shifted upward, slightly to the right and is reduced in size. A false target overlaps the lower right corner of the prototype.

Fig. 1. Initial Window Position.

The termination conditions are shown in
Figure 2, where the true target was located
after 49 steps. All parameters were correct with the axception of magnification,
which was about 5% too large. Smaller values of magnification, however, increase the
error due to the presence of the false object, which is barely touching the bottom
edge of the window in Figure 2.

Fig. 2. Terminal Window Position.

BIBLIOGRAPHY

- (1) Auslander, L., <u>Differential Geometry</u>, Harper and Row, New York, 1967.
- [2] Cohn, P. M., <u>Lie Groups</u>, Cambridge University Press, London, 1957.
- [3] Dirilten, H. and T. G. Newman, Pattern Matching under Affine Transformations, <u>IEEE Trans. Comp.</u>, Vol. C-24, No. 12, 1975, pp. 1191-1201.
- [4] Newman, T. G. and D. A. Demus, Lie Theoretic Methods in Video Tracking, <u>Proceedings of the MICOM Workshop on</u> <u>Imaging Trackers and Autonomous Ac-</u> <u>quisition Applications</u>, Redstone Arsenal, Nov. 1979.
- [5] Clobec, L., <u>Pattern Matching by Means of Adaptive Control</u>, <u>Masters Report</u>, Texas Tech University, 1980.

